Supplementary Information

The self-assembly behavior of polymer brush induced by the orientational ordering of rod backbones: A dissipative particle dynamics study

Jing Zhang, Jianchang Xu, Liyang Wen, Fusheng Zhang, Lijuan Zhang*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

*Corresponding authors: <u>celjzh@scut.edu.cn</u>

1 1. Dissipative particle dynamics

2 The Dissipative particle dynamics (DPD) method was first proposed by 3 Hoogerbrugge and Koelman¹ in 1992 and subsequently modified by Espaol² and 4 Warren³ by introducing conservative forces, which promoted the development of it. 5 The DPD method is a coarse-grained particle-based mesoscale simulation technique. 6 In DPD, molecules are divided into a set of soft beads each representing a group of 7 atoms that is large on the atomistic scale but still macroscopically small. All beads 8 comply with Newton's equation^{4, 5}

9
$$\frac{d\mathbf{r}_i}{dt} = \mathbf{v}_i, \quad m_i \frac{d\mathbf{v}_i}{dt} = \mathbf{f}_i \tag{1}$$

10 where r_i , v_i , m_i , and f_i denote the position vector, velocity, mass of the *i* particle and 11 the acting force on the *i* particle, respectively. The force (**f**_{*i*}) is composed of three 12 different pairwise-additive forces^{6, 7}:

13
$$\mathbf{f}_{i} = \sum_{i \neq j} \left(\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R} \right)$$
(2)

14 Where F_{ij}^{C} is the conservative repulsive force representing excluded volume effect, F_{ij}^{D} 15 is the dissipative force representing viscous drag between moving beads, and F_{ij}^{R} is the 16 random force representing stochastic impulse. These forces conserve net momentum 17 and all acts along the line joining two interacting particles. Specifically, the 18 conservative, dissipative, and random forces are given as follows⁸:

19
$$\mathbf{F}_{ij}^{C} = \begin{cases} a_{ij}(1 - r_{ij})\theta_{ij}\hat{\mathbf{r}}_{ij} & (r_{ij} < 1) \\ 0 & (r_{ij} \ge 1) \end{cases}$$
(3)

20
$$\mathbf{F}_{ij}^{D} = \begin{cases} -\gamma \omega^{D}(r_{ij})(\hat{\mathbf{r}} \cdot \mathbf{v}_{ij})\hat{\mathbf{r}}_{ij} & (r_{ij} < 1) \\ 0 & (r_{ij} \ge 1) \end{cases}$$
(4)

21
$$\mathbf{F}_{ij}^{R} = \begin{cases} \sigma w^{R}(r_{ij})\theta_{ij}\hat{\mathbf{r}}_{ij} & (r_{ij} < 1) \\ 0 & (r_{ij} \ge 1) \end{cases}$$
(5)

22 Where a_{ij} is interaction parameter between beads, r_{ij} is the distance between beads; σ 23 is the standard deviation of random forces, γ is the viscosity coefficient, which 24 denotes the intensity of dissipative force and random force, respectively. w^{D} and w^{R} 1 are two weight functions depending on the distance r_{ij} , which represent the case that 2 the dissipative force and the random force show a gradual decay as the distance 3 between the beads increases. In addition, θ_{ij} is a random number generated from 0 to 1 4 with Gaussian distribution and unit variance. And θ_{ij} satisfies the relationship of 5 $\langle \theta_{ij}(t) \rangle = 0$ and $\langle \theta_{ij}(t) \theta_{kl}(t') \rangle = (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \delta(t - t')$ to ensure the random forces 6 generated between the pairs of beads are independent and do not affect each other and 7 $\theta_{ij} = \theta_{ji}$.

8 2. Interaction parameters (a_{ij}) calculation

9 In DPD simulation, it is a very important step to calculate interaction parameters a_{ij} is 10 the maximum repulsive parameter between beads *i* and *j*, depending on the underlying 11 atomistic interaction, which is linearly related to the Flory-Huggins parameter χ_{ij} by 12 the equation as follows⁹:

13
$$a_{ij} = a_{ii} + 3.27\chi_{ij}$$
 (6)

14 where a_{ii} is equal to 25. The repulsive parameters a_{ij} can be obtained from 15 Flory–Huggins parameters χ_{ij}^{10} .

$$\chi_{ij} = \frac{\Delta E^{mix} V_r}{RT\phi_i \phi_j V}.$$
(7)

16

17 where χ_{ij} is mapped from a long chain to a short DPD chain and bridges the gap 18 between atomistic MD and mesoscale DPD methods. *R* is the gas constant and *T* is 19 temperature, ϕ_i and ϕ_j are the volume fractions of beads *i* and *j*, respectively. *V* is the 20 total volume, and V_r is a reference volume. ΔE_{mix} is the mixing energy of two different 21 types of beads, which can be estimated by¹⁰:

$$\Delta E^{mix} = E_{ij} - (E_i + E_j) \tag{8}$$

where E_{ij} , E_i , and E_j are the total potential energy of a binary mixture and the potential energies of pure components *i* and *j*, respectively. ΔE_{mix} has been determined by MD simulations using the COMPASS force field.

- 1 6. T. Yue, X. Wang, F. Huang and X. Zhang, *Nanoscale*, 2013, **5**, 9888-9896.
- J. Xin, D. Liu and C. Zhong, *The Journal of Physical Chemistry B*, 2007, **111**, 13675 13682.
- 4 8. X. D. Guo, L. J. Zhang, Z. M. Wu and Y. Qian, *Macromolecules*, 2010, 43, 7839-7844.
- 5 9. R. D. Groot and K. L. Rabone, *Biophysical Journal*, 2001, **81**, 725-736.
- 6 10. Z. Luo and J. Jiang, *Journal of Controlled Release*, 2012, **162**, 185-193.
- 7