Supporting Information

Dynamics of Propene and Propane in ZIF-8 Probed by

Solid-State ${ }^{2} \mathrm{H}$ NMR

Alexander E. Khudozhitkov ${ }^{\text {a,b }}$ Sergei S. Arzumanov, a,b Daniil I. Kolokolov,*,a,b Dieter Freude, ${ }^{\text {c }}$ Alexander G. Stepanov*,a
${ }^{\text {a }}$ Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
${ }^{\mathrm{b}}$ Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia

${ }^{\text {c Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, } 04103 \text { Leipzig, }}$ Germany

1. ${ }^{2} \mathrm{H}$ NMR spin-lattice and spin-spin relaxation temperature dependences for the perdeuterated propene- \boldsymbol{d}_{6}.

Figure S1. ${ }^{2} \mathrm{H}$ NMR spin relaxation times $T_{1}(0)$ and $T_{2}(\square)$ of propene $-d_{6}$ as a function of the temperature. Relaxation of the unresolved signal is shown in green, of the CD_{3} group is in red, and the relaxation of the $\mathrm{CD} / \mathrm{CD}_{2}$ groups (unresolved signal) is in yellow.

2. Modeling of spin relaxation

To understand the detailed mechanism of rotations and their kinetic parameters (the activations barriers and rate constants), a detailed fitting analysis of the ${ }^{2} \mathrm{H}$ NMR spin relaxation within experimentally studied temperature range is to be performed. Our homemade FORTRAN simulation routines are based on the general formalism proposed by Abragam ${ }^{1}$ and developed in details by Spiess ${ }^{2}$ and others ${ }^{3-6}$.

Spin relaxation times T_{1} and T_{2} are generally anisotropic and depend on the observation angles θ and φ in the powder pattern. They are given by the usual formula: ${ }^{2}$

$$
\begin{align*}
& \frac{1}{T_{1}}=\frac{3}{4} \pi^{2} Q_{0}^{2}\left(J_{1}\left(\omega_{0}\right)+4 J_{2}\left(2 \omega_{0}\right)\right) \tag{1}\\
& \frac{1}{T_{2}}=\frac{3}{8} \pi^{2} Q_{0}^{2}\left(3 J_{0}(0)+5 J_{1}\left(\omega_{0}\right)+2 J_{2}\left(2 \omega_{0}\right)\right), \tag{2}
\end{align*}
$$

where the spectral density function $J_{m}(\omega)$ for the chosen model of the molecule motion is defined by the expression:

$$
\begin{equation*}
J_{m}(\omega)=2 \sum_{a, b=-2}^{2} D_{a, q}\left(\Omega_{L}\right)^{*} D_{b, q}\left(\Omega_{L}\right) \otimes G_{0, a \mid 0, b}(\omega), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{c, a \mid d, b}(\omega)=\sum_{l, k, n=1}^{N} D_{c, a}^{l}\left(\Omega_{l}\right)^{*} D_{d, b}^{k}\left(\Omega_{k}\right) p_{e q}(l) V_{l, n}\left(\frac{-\lambda_{n}}{\lambda_{n}^{2}+\omega^{2}}\right) V_{n, k}^{-1} \tag{4}
\end{equation*}
$$

Here Ω_{L} are the observation angles θ and φ, which connect the molecular frame with the laboratory frame; Ω_{k} are the Euler angles which connect the molecular frame with the k-th distinct position of the $C-D$ bond within the assumed geometry of the jump model; $V_{l, n}$ is a matrix composed by Eigen vectors of kinetic matrix K and λ_{n} are its Eigen values; N is the number of distinct jump-sites.

If one or multiple isotropic motions are present the corresponding correlation function is no longer dependent from the polar angles and the resulting function is simply a tensor multiplication of correlation functions for distinct motional modes:

$$
\begin{equation*}
J_{m}(\omega)=2 \sum_{a, b=-2}^{2} D_{a, q}\left(\Omega_{L}\right)^{*} D_{b, q}\left(\Omega_{L}\right) \otimes G_{c, a \mid d, b}^{1}(\omega) \otimes G_{0, c \mid 0, d}^{2}(\omega) \tag{5}
\end{equation*}
$$

Once the individual motional model is defined, the exchange between the states I and II is modeled as standard chemical exchange of the individual relaxation rates ($T_{1}{ }^{\mathbf{I}}$ and $T_{1}{ }^{\mathbf{I I}}$) and ($T_{2}{ }^{\mathbf{I}}$ and $T_{2}{ }^{\text {II }}$) with respective populations and the exchange rate. The resulting effective relaxation times were directly computed from the Bloch's equations:

$$
\begin{align*}
& \frac{d}{d t}\binom{M_{Z}^{I}}{M_{Z}^{I I}}=\left(\begin{array}{cc}
-\frac{1}{T_{1}^{I}}-K_{e q} \cdot k_{e x} & K_{e q} \cdot k_{e x} \\
k_{e x} & -\frac{1}{T_{1}^{I I}}-k_{e x}
\end{array}\right)\binom{M_{Z}^{I}}{M_{Z}^{I}} \tag{6}\\
& \frac{d}{d t}\binom{M_{\perp}^{I}}{M_{\perp}^{I I}}=\left(\begin{array}{cc}
-\frac{1}{T_{2}^{I}}-K_{e q} \cdot k_{e x} & K_{e q} \cdot k_{e x} \\
k_{e x} & -\frac{1}{T_{2}^{I I}-k_{e x}}
\end{array}\right)\binom{M_{\perp}^{I}}{M_{\perp}^{I I}} \tag{7}
\end{align*}
$$

where $M_{Z}{ }^{\mathbf{I}}$ and $M_{\perp}{ }^{\mathbf{I}}$ are the longitudinal and transverse magnetization of state \mathbf{I} and $M_{Z}{ }^{\mathbf{I I}}$ and $M_{\perp}{ }^{\mathbf{I I}}$ are corresponding magnetization of state II, $k_{\text {ex }}$ is the exchange rate, $K_{e q}=p_{I I} / p_{I}$ is the equilibrium constant. The effective relaxation T_{1} and T_{2} are then determined by numerical calculation as Eigenvalues of the exchange matrices. ${ }^{7}$ The net longitudal magnetization decays in biexponential manner with rates equal to eigenvalues of the matrix. Both eigenvalues are negative. One eigenvalue has large magnitude and equal to the $\lambda_{\max }=-k_{e x}\left(K_{e q}+1\right)$ in the fast
exchange limit. The other eigenvalue ${ }^{\lambda_{\text {min }}}$ has low magnitude and contains information about the molecular mobility even in the fast limit. Since $e^{-\lambda_{\max }{ }^{t}}$ decays too fast to be observed in the experiment, the final relaxation rate is chosen as the $\lambda_{\text {min }}$.

3. Synthesis and characterization of the ZIF-8

The material was the same used earlier in ref. ${ }^{8}$ for benzene mobility characterization in ZIF-8. It was synthesized following the route reported by Cravillon et al. ${ }^{9}$ and Keser Demir et al. ${ }^{10}$ A solution of the $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (2.3 g , Sigma-Aldrich) in 75 mL of MeOH was quickly poured into a solution of $2-\mathrm{miM}(5 \mathrm{~g})$ in 75 mL of MeOH under stirring at room temperature with pH mediated by NaOH . After 1 h the nanoparticles were separated from the mother solution by centrifugation. The resulting white crystals were washed twice by 100 mL of deionized water (18 h in total) and twice by 100 mL of MeOH (24 h in total). The resulting product was dried under a flush of nitrogen at room temperature and activated at high vacuum at 373 K for 10 h .

The XRD analysis of the activated material (Figure S2) revealed a pattern matching with previously reported data ${ }^{9}$, ${ }^{10}$. The X-Ray diffraction patterns were collected on the Siemens D500 instrument using $\mathrm{CuK} \alpha$ radiation. The N_{2} adsorption measurement of the activated at 423 K material has shown a BET surface area of $\mathrm{S}_{\mathrm{BET}} \sim 1350 \mathrm{~m}^{2} / \mathrm{g}$ (Figures S3,S4).

Figure S2. XRD pattern of the activated ZIF-8 material. The XRD is the typical fingerprint of ZIF-8 structure.

Figure S3. Nitrogen adsorption isotherm for the activated ZIF-8.

Figure S4. Initial adsorption step affords a good linear approximation using the BET model yielding a surface area of $\mathrm{S}_{\mathrm{BET}} \sim 1350 \mathrm{~m}^{2} / \mathrm{g}$.

Scanning Electron Microscopy showed regular shaped crystals of uniform distribution.

Figure S5. SEM image of the synthesized ZIF-8 particles. The images were taken on a JEOL JSM-6700F instrument (acceleration voltage $=5 \mathrm{kV}$, current $=10 \mu \mathrm{~A}$).

References:

1. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford, UK, 1961.
2. H. W. Spiess, in NMR Basic Principles and Progress, eds. P. Diehl, E. Fluck and R. Kosfeld, Springer-Verlag, New York, 1978, vol. 15, p. 55-214.
3. R. J. Wittebort and A. Szabo, J. Chem. Phys., 1978, 69, 1722-1736.
4. R. J. Wittebort, E. T. Olejniczak and R. G. Griffin, J. Chem. Phys., 1987, 86, 5411-5420.
5. G. Lipari and A. Szabo, Biophys. J., 1980, 30, 489-506.
6. L. J. Schwartz, E. Meirovitch, J. A. Ripmeester and J. H. Freed, J. Phys. Chem., 1983, 87, 4453-4467.
7. D. I. Kolokolov, A. G. Maryasov, J. Ollivier, D. Freude, J. Haase, A. G. Stepanov and H. Jobic, J. Phys. Chem. C, 2017, 121, 2844-2857.
8. D. I. Kolokolov, L. Diestel, J. Caro, D. Freude and A. G. Stepanov, J. Phys. Chem. C, 2014, 118, 12873-12879.
9. J. Cravillon, S. Munzer, S. J. Lohmeier, A. Feldhoff, K. Huber and M. Wiebcke, Chem. Mater., 2009, 21, 1410-1412.
10. N. Keser Demir, B. Topuz, L. Yilmaz and H. Kalipcilar, Microporous Mesoporous Mater. , 2014, 198, 291-300.
