Electronic Supplementary Information

for

Improved Agreement between Experimental and Computational Results for Collision-Induced Dissociation Mass Spectrometry of Cation-Tagged Hexoses

Cheng-chau Chiu,^a* Chih-Kai Lin,^a Jer-Lai Kuo^a*

^a Institute of Atomic and Molecular Sciences, Academia Sinica, Daan District, Taipei City 10617, Taiwan

*Corresponding author's email:

cheng.chau.chiu@googlemail.com, jlkuo@pub.iams.sinica.edu.tw

S1. Partition Functions

In this section, we will show how we have calculated the partition functions q that are used in Eq (1) of the main text:

$$k_{\rm x} = \frac{k_{\rm B}T}{h} \frac{q_{\rm TS,x}}{q_{\rm Min}} \exp\left(-\frac{E_{\rm A,x}}{k_{\rm B}T}\right) \tag{S1}$$

For the calculation of the partition functions, we have mainly followed Ref S1. For both transition state (TS) and minimum geometries, the molecular partition function q is the product of the different contributions from the vibrational, rotational, translational, and electronic degrees of freedom:

$$q = q_{\rm vib} q_{\rm rot} q_{\rm trans} q_{\rm elect} \tag{S2}$$

As we are dealing with closed-shell, organic species, we assume that the excited electronic states are high enough, so we can write:

$$q_{\text{elect}} \approx 1$$
 (S3)

The vibrational contribution to the partition functions q_{vib} can be written as:

$$q_{\rm vib} = \prod_{i}^{real} [1 - \exp(-h\nu_i/k_{\rm B}T)]^{-1}$$
(S4)

where h, $k_{\rm B}$, and T are the Planck constant, the Boltzmann constant, and the temperature. $v_{\rm i}$ stands for the real vibrational frequencies. The rotational partition function $q_{\rm rot}$ is calculated as

$$q_{\rm rot} = \frac{\sqrt{\pi}}{\sigma} \left\{ \sqrt{T^3 / \prod_{i=1}^3 [h^2 / 8\pi^2 I_i k_{\rm B}]} \right\}$$
(S5)

with I_i being the moment of inertia for the rotation around one of the three principal axes. σ is the symmetry number for the molecules under study and is equal to 1 for all considered cases. The translational partition function is calculated by the following equation:

$$q_{\rm trans} = V \left(\sqrt{2\pi m k_{\rm B} T / h^2} \right)^3 \tag{S6}$$

with *V* and *m* being the mean free volume and the mass of the molecule, which are identical for the minimum state and the corresponding TS, if one assumes that all species behave like ideal gases. Given that all other terms in Eq (S6) are either constants or intensive properties, q_{trans} for both minima state and TS are identical. Therefore, it does not need to be calculated explicitly, as

the translational contribution to the partition function will be canceled out in Eq (S1) (Eq (1) of the main text).

Figure S1. Correlation between the differences in the reaction barriers associated with the TSs optimized at B3LYP and MP2 levels and the similarity index between the optimized TS geometries. a) Ring-opening, b) to f) dehydration via proton transfer from O1, O2, O3, O4, and O6, respectively, to another O site.

Figure S2. Calculated rate constants for the ring-opening and the dehydration channels, as well as the ratio between the rate constants. This figure is the same plot as Figure 3 of the main text, but for a lower temperature range from 200 K to 600 K.

S3. Charge Analysis for IS and TS of ^{1,4}B-1-3 β -Glc and ⁴C₁-1-2 β -Glc

In this section, we provide the detailed data on the changes in the atomic charges upon going from the minima geometries ^{1,4}B-1-3 β -Glc and ⁴C₁-1-2 β -Glc to the associated TSs geometries for dehydration and ring-opening, respectively. In **Tables S1** and **S2**, we show the change in the atomic charges of an atom *i* calculated as

$$\Delta q_i = q_{i,TS} - q_{i,IS} \tag{S7}$$

The subscripts "TS" and "IS" denote the atomic charges in the initial state and transition state structure, respectively. The designation of the atoms is explained in **Figure S3**. Note that the entries in **Tables S1** and **S2** do not necessarily need to match the Δq_{neg} values plotted in **Figure 5** of the main text, as seen for the ring-opening of ${}^{4}C_{1}$ -1-2 β -Glc. This is related to the circumstance that the atom with the most negative charge is not the same in the IS and the TS. While O2 is the most negatively charged atom in ${}^{4}C_{1}$ -1-2 β -Glc, O1 features the most negative atomic charge in the corresponding ring-opening TS.

Figure S3. Designation of the C and O atoms in β -Glc. The H atoms will be denoted by labels of the form H_X with x being the C or O atom to which the H atom is bound.

	Dehydration								Ring-Opening							
	BLYP	B3LYP	M06-L	M06	M06-2X	M06-HF	MP2	BLYP	B3LYP	M06-L	M06	M06-2X	M06-HF	MP2		
EXX(%)	0	20	0	27	54	100	100	0	20	0	27	54	100	100		
01	.096	075	114	126	152	139	112	049	070	067	075	084	089	073		
O2	017	029	016	015	016	007	028	022	021	019	020	022	023	019		
03	.019	.024	.022	.016	.020	.018	.026	.017	.018	.021	.017	.018	.020	.019		
O4	005	015	010	009	010	006	016	001	001	003	002	001	004	002		
05	112	040	.006	.001	.001	015	023	.002	002	.005	003	.001	002	.026		
O6	033	047	113	147	162	197	054	.025	.025	.025	.025	.025	.025	.023		
C1	.006	.014	.010	.011	.010	.017	.001	.011	.014	.009	.014	.011	.024	.002		
C2	032	018	006	005	003	003	016	015	015	013	015	014	012	016		
C3	.025	.015	.012	.014	.014	.006	.013	.022	.022	.023	.025	.024	.020	.022		
C4	.017	.014	.005	.000	.007	.005	.008	003	004	006	008	006	006	008		
C5	050	.000	.048	.062	.053	.128	.010	.002	.003	002	.000	.002	.003	.001		
C6	.002	.034	017	.020	.057	005	.047	008	007	009	008	009	010	009		
H _{O1}	008	012	011	009	008	021	011	.000	.010	.007	.018	.020	.026	.001		
H _{O2}	.004	.002	.001	.000	001	001	.001	.006	.006	.006	.006	.006	.005	.006		
H _{O3}	003	009	006	005	006	005	009	.000	001	.000	001	.000	003	.000		
H _{O4}	.000	.008	.009	.009	.009	.010	.009	.005	.005	.006	.004	.005	.007	.005		
H _{O6}	.005	.012	004	003	002	010	.014	008	008	006	005	006	011	008		
H _{C1}	051	059	044	045	037	014	057	016	015	019	020	015	.000	016		
H _{C2}	.004	006	016	017	016	.001	008	.011	.011	.012	.012	.012	.011	.016		
H _{C3}	003	008	003	002	003	004	008	.006	.005	.005	.006	.004	011	.004		
H _{C4}	.005	.023	.028	.033	.032	.032	.035	.007	.010	.010	.015	.011	.015	.010		
H _{C5}	.079	.078	.110	.102	.105	.097	.079	.012	.015	.018	.019	.019	.016	.020		
H _{C6}	.024	.037	.051	.056	.053	.057	.041	.001	.002	.004	.003	.004	.002	.003		
H _{C6}	.029	.057	.057	.059	.055	.055	.062	006	005	006	008	005	006	005		
Na	001	001	.001	001	.000	.001	002	.001	.001	.001	.002	.001	.003	003		

Table S1 Differences between the NBO charges on each atom^a in the IS and the TS for dehydration and ring-opening of ^{1,4}B-1-3 β -Glc, respectively, calculated at different levels of theory.^a

^a Values in |e|, see Eq (S7). For the designation of the atoms, please refer to Figure S3. The colors of the cells are used to visualize the differences in the atomic charges: White: no charge in atomic charge, Red/Blue: atomic charge becomes more negative (increase in e⁻ population)/positive (decrease in e⁻ population) when going from the IS to the TS. The values of the proton accepting (donating) oxygen atoms are marked in bold (italics). The atom with the most negative atomic charge in IS and both TSs is O1.

	Dehydration								Ring-Opening							
-	BLYP	B3LYP	M06-L	M06	M06-2X	M06-HF	MP2	BLYP	B3LYP	M06-L	M06	M06-2X	M06-HF	MP2		
EXX(%)	0	20	0	27	54	100	100	0	20	0	27	54	100	100		
01	.070	.068	.068	.073	.063	.051	.059	079	101	096	100	115	127	108		
O2	104	107	116	112	113	113	122	.027	.025	.027	.022	.025	.025	.025		
O3	039	072	032	087	098	118	058	.004	.005	.005	.005	.005	.005	.005		
O4	.013	.002	001	.009	.001	.000	.000	.014	.011	.011	.011	.011	.012	.012		
O5	.023	.021	.018	.020	.016	.011	.015	016	014	006	015	013	019	.002		
O6	003	003	004	003	004	003	003	.004	.006	.006	.006	.006	.007	.006		
C1	.023	.027	.018	.022	.030	.034	.026	007	003	008	005	003	.006	009		
C2	.003	.026	.005	.019	.045	.093	.045	017	016	013	014	015	018	016		
C3	.003	.033	.025	.053	.045	.032	.020	.000	.000	002	003	002	.000	001		
C4	038	047	049	052	050	044	041	005	003	003	002	002	001	003		
C5	.026	.022	.022	.020	.019	.018	.014	.016	.019	.014	.016	.019	.021	.018		
C6	.000	001	.000	.000	.000	001	.000	009	009	008	008	009	010	009		
H _{O1}	012	012	013	013	012	009	011	.031	.045	.041	.053	.059	.065	.038		
H _{O2}	007	013	007	012	014	015	007	.000	001	001	.000	001	002	001		
H _{O3}	.008	.010	.014	.006	.011	.015	.016	.001	.000	.000	.001	.000	.000	.001		
H _{O4}	.002	.006	.007	.003	.006	.006	.006	001	002	002	002	004	005	003		
H _{O6}	.004	.005	.005	.004	.005	.004	.005	.003	.004	.004	.004	.005	.004	.004		
H _{C1}	.006	.010	.011	.012	.011	.007	.004	.021	.021	.021	.019	.021	.020	.021		
H _{C2}	036	038	039	040	036	032	038	016	016	020	018	017	014	018		
H _{C3}	.032	.037	.038	.047	.041	.036	.042	.002	.003	.003	.003	.004	.005	.004		
H _{C4}	.024	.020	.024	.023	.024	.021	.021	.005	.002	.002	.002	.002	.003	.003		
H _{C5}	.005	.005	.004	.005	.005	.004	.006	.025	.026	.027	.028	.027	.025	.032		
H _{C6}	.008	.008	.009	.008	.008	.007	.008	.007	.007	.007	.007	.008	.008	.008		
H _{C6}	.001	.002	.002	.002	.002	.002	.002	005	005	007	006	005	005	006		
Na	012	008	007	006	006	006	008	006	005	003	004	004	004	005		

Table S2 Differences between the NBO charges on each atom^a in the IS and the TS for dehydration and ring-opening of ${}^{4}C_{1}$ -1-2 β -Glc, respectively, calculated at different levels of theory.^a

^a Values in |e|, see Eq (S7). For the designation of the atoms, please refer to Figure S3. The colors of the cells are used to visualize the differences in the atomic charges: White: no change in atomic charge, Red/Blue: atomic charge becomes more negative (increase in e⁻ population)/positive (decrease in e⁻ population) when going from the IS to the TS. The values of the proton accepting (donating) oxygen atoms are marked in bold (italics). The atom with the most negative atomic charge in IS and the dehydration TS is O2; in the ring-opening TS, it is O1.

References

S1 D. A. McQuarrie, J. D. Simon, Molecular Thermodynamics; University Science Books: Sausalito, CA, **1999**