## Predicting Reactive Sites with Quantum Chemical Topology: Carbonyl Additions in Multicomponent Reactions

David Ramirez-Palma,<sup>a</sup> César R. García-Jacas,<sup>b</sup> Pablo Carpio-Martinez,<sup>c</sup> Fernando Cortés-Guzmán<sup>\*a</sup>

## **List of Tables**

| 1  | Carbonyl structures and their hydration equilibrium constants                                              | 2  |
|----|------------------------------------------------------------------------------------------------------------|----|
| 2  | Electrostatic descriptors of carbon atom in the carbonyl group                                             | 3  |
| 3  | Delocalization and energetic descriptors of carbon atom in the carbonyl group                              | 4  |
| 4  | Electrostatic descriptors of oxygen atom in the carbonyl group                                             | 5  |
| 5  | Delocalization and energetic descriptors of oxygen atom in the carbonyl group                              | 7  |
| 6  | Experimental and predicted values, and errors in the prediction, for the training and test compounds       | 8  |
| 7  | Experimental and predicted values, and errors in the prediction, for the training and test compounds, cont | 8  |
| 8  | Regression coefficients corresponding to the descriptors included in the best model built.                 | 9  |
| 9  | Statistical parameters corresponding to the best model built.                                              | 9  |
| 10 | Values of the descriptors of reaction 1                                                                    | 9  |
| 11 | Values of the descriptors of reaction 2                                                                    | 9  |
| 12 | Values of the descriptors of reaction 3                                                                    | 10 |
| 13 | Values of the descriptors during the reaction between cyclohexanone and Lithium aluminium hydride          | 10 |
| 14 | Values of the descriptors during the reaction between cyclohexanone and Lithium aluminium hydride. cont    | 11 |
| 15 | Values of the descriptors during the reaction between cyclohexanone and Lithium aluminium hydride. cont    | 12 |

## **List of Figures**

| 1 | Williams graph for the regression model of 3 variables. | <br>6 |
|---|---------------------------------------------------------|-------|
|   | 6 1 6                                                   |       |

| ĪD | Molecule              | logk   |
|----|-----------------------|--------|
| 1  | $H_2CO$               | 3.36   |
| 2  | $(CH_3)_2CO$          | -2.85  |
| 3  | $ClCH_2COCH_3$        | -1.05  |
| 4  | 3Cl - PhCHO           | -1.66  |
| 5  | $CH_3CH_2CHO$         | -0.07  |
| 6  | $(CH_3)_2 CHCHO$      | -0.21  |
| 7  | $CCl_3CHO$            | 4.45   |
| 8  | 4Cl - PhCHO           | -1.79  |
| 9  | $4CF_3 - PhCHO$       | -1.25  |
| 10 | $3NO_2 - PhCHO$       | -0.96  |
| 11 | $4Cl, 3NO_2 - PhCHO$  | -0.74  |
| 12 | $3,5(NO_2)_2 - PhCHO$ | 0.32   |
| 13 | $2Cl, 5NO_2 - PhCHO$  | -0.47  |
| 14 | $FCH_2COCH_3$         | -0.78  |
| 15 | $CF_3COCH_3$          | 1.54   |
| 16 | $(CH_3)_2 CHCOOCH_3$  | -10.42 |
| 17 | $PhCOCF_3$            | 1.89   |
| 18 | $ClCH_2COOCH_3$       | -6.66  |
| 19 | $CF_3COOCH_3$         | -0.9   |
| 20 | $CHF_2COOCH_3$        | -2.92  |
| 21 | $CH_3CON(CH_3)_2$     | -14.2  |
| 22 | $HCOOCH_3$            | -6.6   |
| 23 | $HCON(CH_3)_2$        | -13.8  |
| 24 | $CH_3CH_2COOCH_3$     | -9.43  |
| 25 | $CH_3OCH_2COOCH_3$    | -9.21  |
| 26 | $PhCOCHCl_2$          | -0.48  |
| 27 | $CCl_3COOCH_3$        | -4.24  |
| 28 | $CF_3CON(CH_3)_2$     | -9.2   |
| 29 | $CH_{3}CHO$           | 0.03   |
| 30 | $ClCH_2COCH_2Cl$      | 1      |
| 31 | $CH_3CH_2CH_2CHO$     | -0.08  |
| 32 | $(CH_3)_3CCHO$        | -0.63  |
| 33 | $3, 4Cl_2 - PhCHO$    | -1.35  |
| 34 | $4NO_2 - PhCHO$       | -0.77  |
| 35 | $CHCl_2COCH_3$        | 0.46   |
| 36 | $CH_3COOCH_3$         | -8.2   |
| 37 | $CHCl_2COOCH_3$       | -4.34  |
| 38 | $PhCOOCH_3$           | -10.07 |
| 39 | $HCON(CH_3)Ph$        | -10.22 |
| 40 | $PhCOCH_3$            | -5.18  |

Table 1: Carbonyl structures and their hydration equilibrium constants

|                 | Q(C)             | 1.617606  | 1.129044  | 1.512884  | 1.351838  | 0.222102  | 1.075723  | 0.238620  | 0.437513  | 0.851359  | 1.267932  | 0.817570  | 1.751629  | 1.742431  | 1.696822  | 1.601561  | 1.596765  | 1.666795  | 1.706255  | 1.653906  | 1.171622  | 1.316478  | 1.115649  | 1.037217  | 1.765566  | 1.842242  | 1.732913  | 1.989471  | 1.719839  | 1.843793  | 1.847303  | 1.751693  | 1.653984  | 2.156999  | 1.869045  | 1.698118  | 1.786489  | 1.611913  | 1.711526  | 1.825453  |   |
|-----------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---|
|                 | $Q_{EigVal3}(C)$ | 1.390416  | 1.413989  | 1.387488  | 1.320303  | 1.327616  | 1.540363  | 1.424662  | 1.426299  | 1.449809  | 1.449926  | 1.447074  | 1.544934  | 1.532591  | 1.609140  | 1.528469  | 1.524988  | 1.522533  | 1.504212  | 1.488933  | 1.321199  | 1.366274  | 1.353128  | 1.663145  | 1.655923  | 1.619644  | 1.441845  | 1.709891  | 1.655884  | 1.643511  | 1.654849  | 1.668391  | 1.782777  | 1.867949  | 1.890694  | 1.679398  | 1.673502  | 1.471963  | 1.399190  | 1.618777  |   |
|                 | $Q_{EigVal2}(C)$ | 0.020714  | -0.063781 | -0.108342 | -0.046510 | -0.063517 | 0.037904  | -0.072973 | -0.074799 | -0.143587 | -0.222999 | -0.132217 | 0.046107  | 0.045576  | 0.000529  | 0.042924  | 0.039070  | 0.043227  | 0.045161  | 0.053701  | -0.071778 | -0.084827 | -0.091869 | -0.152104 | -0.073265 | -0.026664 | 0.133971  | 0.035596  | -0.051741 | -0.044771 | -0.103392 | 0.094603  | -0.137408 | 0.001054  | -0.027424 | -0.108497 | -0.086437 | 0.059959  | 0.155542  | -0.005370 |   |
|                 | $Q_{EigVal1}(C)$ | -1.411130 | -1.350208 | -1.279146 | -1.273794 | -1.264099 | -1.578267 | -1.351688 | -1.351500 | -1.306223 | -1.226927 | -1.314856 | -1.591042 | -1.578167 | -1.609669 | -1.571393 | -1.564058 | -1.565760 | -1.549373 | -1.542634 | -1.249421 | -1.281448 | -1.261258 | -1.511041 | -1.582658 | -1.592981 | -1.575816 | -1.745487 | -1.604143 | -1.598740 | -1.551457 | -1.762994 | -1.645369 | -1.869003 | -1.863270 | -1.570901 | -1.587064 | -1.531922 | -1.554732 | -1.613407 |   |
| arbonyl group   | $Q_{ZZ}(C)$      | 1.390416  | -0.976825 | -1.250558 | -1.263341 | -0.155679 | 0.909342  | -0.223887 | 0.311928  | 0.639940  | -1.220212 | 0.509941  | -1.553868 | -1.547537 | -1.421556 | -1.500105 | -1.420860 | -1.558668 | -1.511523 | -1.471069 | -1.039640 | -1.229435 | -0.933604 | -0.902354 | -1.582616 | 1.597867  | -1.575815 | -1.745480 | -1.604143 | -1.598740 | -1.545762 | -1.751364 | -1.645368 | -1.869002 | -1.668483 | -1.570901 | -1.587064 | -1.531908 | -1.554731 | -1.613407 |   |
| atom in the c   | $Q_{YY}(C)$      | 0.020714  | -0.001909 | -0.112076 | 0.215045  | -0.059347 | 0.043030  | 0.040454  | 0.109723  | 0.166307  | 0.908519  | 0.298460  | 0.076739  | 0.080302  | -0.091586 | 1.235864  | 0.079469  | 1.290773  | 0.070230  | 0.080920  | 0.051969  | 0.207039  | -0.062152 | 0.894102  | 1.469108  | -1.592979 | 1.412284  | 1.699463  | 1.339127  | 1.594795  | 1.648873  | 0.905079  | 0.676665  | 0.001973  | 1.563708  | 1.343937  | 1.503868  | 1.200281  | 1.397124  | 1 546229  |   |
| ors of carbon   | $Q_{XX}(C)$      | -1.411130 | 0.978734  | 1.362633  | 1.048296  | 0.215026  | -0.952373 | 0.183433  | -0.421650 | -0.806248 | 0.311692  | -0.808401 | 1.477129  | 1.467236  | 1.513142  | 0.264241  | 1.341391  | 0.267894  | 1.441293  | 1.390149  | 0.987671  | 1.022397  | 0.995756  | 0.008251  | 0.113508  | -0.004888 | 0.163532  | 0.046018  | 0.265015  | 0.003944  | -0.103111 | 0.846285  | 0.968703  | 1.867029  | 0.104775  | 0.226964  | 0.083196  | 0.331627  | 0.157608  | 0 067178  |   |
| static descript | $\mu_Z(C)$       | 0.038030  | -0.016351 | 0.010378  | 0.009185  | -0.027753 | 0.016579  | -0.026615 | -0.020446 | 0.013946  | -0.007079 | 0.012383  | -0.000134 | -0.000120 | 0.010899  | -0.003181 | -0.003251 | 0.002012  | 0.003690  | 0.004694  | 0.035914  | -0.009494 | 0.042389  | 0.124137  | 0.001384  | -0.281310 | -0.000045 | 0.000267  | 0.000035  | 0.000176  | -0.015093 | -0.031406 | -0.000294 | 0.000272  | -0.043494 | -0.000079 | 0.000007  | 0.000237  | -0.000033 | -0.000414 |   |
| le 2: Electros  | $\mu_Y(C)$       | 0.000025  | -0.060377 | -0.000766 | -0.136577 | -0.003706 | 0.099306  | -0.127794 | -0.130335 | -0.142610 | -0.135599 | 0.082987  | 0.118019  | 0.099580  | -0.084943 | 0.069195  | 0.083143  | 0.067351  | 0.044656  | 0.062191  | -0.171691 | -0.152031 | -0.227380 | 0.250029  | -0.271569 | 0.000520  | -0.006624 | -0.268592 | -0.216471 | -0.221805 | -0.277537 | 0.240342  | 0.123628  | 0.111106  | 0.159094  | -0.276038 | -0.225110 | 0.114831  | -0.068927 | -0.219012 |   |
| Tab             | $\mu_X(C)$       | -0.000012 | 0.101434  | 0.112346  | 0.026366  | 0.032614  | -0.054253 | 0.033382  | 0.033952  | 0.020423  | 0.069752  | -0.030892 | -0.052179 | -0.040617 | -0.058762 | -0.056955 | -0.024198 | -0.049736 | -0.007971 | -0.019216 | -0.029392 | 0.045606  | -0.092779 | -0.032960 | 0.004756  | 0.040855  | -0.130062 | 0.069820  | -0.101278 | -0.204977 | -0.095923 | -0.209386 | 0.220533  | 0.335794  | -0.151521 | -0.016227 | -0.042239 | 0.047399  | -0.091852 | -0.181696 |   |
|                 | $ \mu(C) $       | 0.038030  | 0.119170  | 0.112827  | 0.139402  | 0.042984  | 0.114368  | 0.134736  | 0.136228  | 0.144738  | 0.152651  | 0.089412  | 0.129040  | 0.107545  | 0.103861  | 0.089677  | 0.086654  | 0.083749  | 0.045512  | 0.065261  | 0.177852  | 0.159008  | 0.249212  | 0.281089  | 0.271614  | 0.284262  | 0.130231  | 0.277519  | 0.238992  | 0.302015  | 0.294034  | 0.320302  | 0.252822  | 0.353698  | 0.223967  | 0.276515  | 0.229038  | 0.124229  | 0.114838  | 0.284570  |   |
|                 | q(C)             | 1.127860  | 1.103553  | 1.077850  | 1.092619  | 1.110687  | 1.103388  | 1.090414  | 1.090133  | 1.083724  | 1.079670  | 1.193420  | 1.099143  | 1.105224  | 1.046028  | 1.110891  | 1.107233  | 1.111308  | 1.121698  | 1.112823  | 1.117930  | 1.082706  | 1.141228  | 1.570193  | 1.591960  | 1.686233  | 1.075460  | 1.586231  | 1.639371  | 1.713959  | 1.666618  | 1.455904  | 1.634796  | 1.498701  | 1.486494  | 1.580275  | 1.617347  | 1.023810  | 1.053642  | 1.722389  |   |
|                 | Ð                | -         | 0         | n         | 4         | Ś         | 9         | 2         | ×         | 6         | 10        | 11        | 12        | 13        | 14        | 15        | 16        | 17        | 18        | 19        | 20        | 21        | 22        | 23        | 24        | 25        | 26        | 27        | 28        | 29        | 30        | 31        | 32        | 33        | 34        | 35        | 36        | 37        | 38        | 39        | í |

| A        | $\lambda(C)$ | $\delta_{Bond}(C,A)/2$ | $\delta_{NonBond}(C,A)/2$ | $K_{Scaled}(C)$ | $V_{en}(C)$ |
|----------|--------------|------------------------|---------------------------|-----------------|-------------|
|          | 3.230046     | 1.642101               | -0.00007                  | -37.289000      | -105.029835 |
| 2        | 3.188859     | 1.640051               | 0.067536                  | -37.322300      | -117.16229( |
| e        | 3.162857     | 1.634810               | 0.124483                  | -37.347230      | -129.212816 |
| 4        | 3.152900     | 1.621549               | 0.132933                  | -37.187864      | -143.96794  |
| S        | 3.133848     | 1.610888               | 0.144577                  | -37.164354      | -159.23423( |
| 9        | 3.178329     | 1.634494               | 0.083788                  | -37.208756      | -149.726303 |
| 2        | 3.200014     | 1.627767               | 0.081805                  | -37.344577      | -124.87066( |
| $\infty$ | 3.199794     | 1.628360               | 0.081714                  | -37.347345      | -129.94500  |
| 6        | 3.204043     | 1.612586               | 0.099647                  | -37.363377      | -132.932927 |
| 10       | 3.204768     | 1.597013               | 0.118549                  | -37.378417      | -141.09252  |
| 11       | 3.115293     | 1.574726               | 0.116561                  | -37.092245      | -161.227892 |
| 12       | 3.179983     | 1.636357               | 0.084517                  | -37.211422      | -148.806235 |
| 13       | 3.176336     | 1.635155               | 0.083285                  | -37.172620      | -156.73992  |
| 14       | 3.211685     | 1.659365               | 0.082922                  | -37.377379      | -156.460632 |
| 15       | 3.173059     | 1.634969               | 0.081080                  | -37.318808      | -152.268634 |
| 16       | 3.177581     | 1.634550               | 0.080636                  | -37.321368      | -150.980666 |
| 17       | 3.173105     | 1.634767               | 0.080820                  | -37.222889      | -159.372528 |
| 18       | 3.167277     | 1.633431               | 0.077594                  | -37.305161      | -162.745361 |
| 19       | 3.175447     | 1.627148               | 0.084582                  | -37.221002      | -165.444148 |
| 20       | 3.128453     | 1.602526               | 0.151091                  | -37.154603      | -159.11792( |
| 21       | 3.165272     | 1.613363               | 0.138659                  | -37.347921      | -138.023178 |
| 5        | 3.120203     | 1.574800               | 0.163769                  | -37.308045      | -154.361767 |
| 23       | 2.825012     | 1.498601               | 0.106193                  | -37.094364      | -146.986187 |
| 24       | 2.804862     | 1.523017               | 0.080161                  | -37.053850      | -132.467298 |
| 25       | 2.716046     | 1.498303               | 0.099419                  | -36.978970      | -158.433229 |
| 26       | 3.143615     | 1.602715               | 0.178210                  | -37.392633      | -180.504460 |
| 27       | 2.801063     | 1.522150               | 0.090557                  | -37.063640      | -154.957295 |
| 28       | 2.761306     | 1.513557               | 0.085767                  | -37.005540      | -145.420114 |
| 29       | 2.703898     | 1.468291               | 0.113853                  | -36.990014      | -154.26033] |
| 30       | 2.746192     | 1.483769               | 0.103421                  | -37.025451      | -147.40325( |
| 31       | 2.856765     | 1.587825               | 0.099506                  | -37.165375      | -140.352324 |
| 32       | 2.820879     | 1.524102               | 0.020223                  | -37.010607      | -121.06720  |
| 33       | 2.867447     | 1.583125               | 0.050727                  | -37.135291      | -128.882999 |
| 34       | 2.877143     | 1.578306               | 0.058056                  | -37.147454      | -146.867940 |
| 35       | 2.816852     | 1.510213               | 0.092660                  | -37.075041      | -139.639329 |
| 36       | 2.786059     | 1.500161               | 0.096433                  | -37.053868      | -144.692423 |
| 37       | 3.181761     | 1.658889               | 0.135540                  | -37.419875      | -155.003056 |
| 38       | 3.151965     | 1.629587               | 0.164805                  | -37.366024      | -185.02078- |
| 39       | 2.685034     | 1.484105               | 0.108471                  | -36.949565      | -171.012225 |
| 40       | 2.769944     | 1.541246               | 0.134115                  | -37.105835      | -162.761899 |

| - ~ () ~ () -  | $ \mathcal{O}(\mathcal{O}) $ | 0.388377  | 0.247381  | 0.445669  | 0.323409  | 0.210399  | 0.121768  | 0.099031  | 0.042461  | 0.116516  | 0.283460  | 0.053887  | 0.362099  | 0.352297  | 0.484590  | 0.282087  | 0.311261  | 0.299793  | 0.324520  | 0.310540  | 0.246137  | 0.330387  | 0.191764  | 0.335056  | 0.616628  | 0.458238  | 0.384423  | 0.574919  | 0.574163  | 0.523154  | 0.514569  | 0.722446  | 0.441669  | 0.644219  | 0.557666  | 0.606434  | 0.566654  | 0.432386  | 0.461905  | 0.535624  |  |
|----------------|------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|                | $Q_{EigVal3}(U)$             | 0.368058  | 0.432610  | 0.452383  | 0.428966  | 0.381257  | 0.378671  | 0.375591  | 0.375569  | 0.373744  | 0.369281  | 0.267987  | 0.389776  | 0.379617  | 0.502449  | 0.368519  | 0.361854  | 0.370859  | 0.348880  | 0.341692  | 0.382119  | 0.464111  | 0.297538  | 0.517518  | 0.583780  | 0.576442  | 0.381817  | 0.516335  | 0.514743  | 0.508118  | 0.596428  | 0.695808  | 0.593992  | 0.740857  | 0.607316  | 0.516454  | 0.501955  | 0.503264  | 0.449982  | 0.473436  |  |
|                | $Q_{EigVal2}(O)$             | -0.076664 | -0.151036 | -0.217767 | -0.211531 | -0.170851 | -0.174126 | -0.160486 | -0.162688 | -0.146970 | -0.137989 | -0.118299 | -0.183835 | -0.173244 | -0.205453 | -0.157810 | -0.160911 | -0.164310 | -0.142058 | -0.169641 | -0.163179 | -0.202313 | -0.122158 | 0.030892  | -0.111612 | -0.164305 | -0.068666 | 0.013596  | -0.033306 | -0.095818 | -0.189929 | -0.072734 | -0.219405 | -0.250508 | -0.080735 | 0.017352  | -0.020913 | -0.148628 | -0.132564 | -0.008455 |  |
|                | $Q_{EigVal1}(O)$             | -0.291394 | -0.281574 | -0.234616 | -0.217435 | -0.210406 | -0.204545 | -0.215105 | -0.212881 | -0.226774 | -0.231292 | -0.149688 | -0.205941 | -0.206373 | -0.296996 | -0.210710 | -0.200943 | -0.206549 | -0.206822 | -0.172052 | -0.218939 | -0.261798 | -0.175380 | -0.548410 | -0.472167 | -0.412137 | -0.313150 | -0.529931 | -0.481437 | -0.412300 | -0.406499 | -0.623074 | -0.374587 | -0.490348 | -0.526580 | -0.533806 | -0.481042 | -0.354637 | -0.317417 | -0.464981 |  |
| rbonyl group   | $Q_{ZZ}(0)$                  | 0.368058  | -0.113623 | -0.227696 | -0.213764 | 0.060448  | 0.115881  | -0.058005 | 0.042310  | 0.092782  | -0.229751 | 0.045942  | -0.178602 | -0.169064 | -0.190713 | -0.146370 | -0.143931 | -0.163102 | -0.136556 | -0.158827 | -0.119396 | -0.190083 | -0.118690 | -0.303216 | -0.472160 | 0.379544  | -0.313150 | -0.529931 | -0.481437 | -0.412300 | -0.405038 | -0.619436 | -0.374587 | -0.490348 | -0.420388 | -0.533806 | -0.481042 | -0.354637 | -0.317417 | -0.464981 |  |
| tom in the ca  | $Q_{YY}(0)$                  | -0.291394 | -0.133492 | -0.217937 | -0.103293 | -0.204753 | -0.025547 | -0.040509 | -0.024260 | 0.014647  | 0.258656  | 0.001419  | -0.183486 | -0.183139 | -0.290444 | 0.282019  | -0.167044 | 0.299393  | -0.186672 | -0.151686 | -0.126704 | -0.138984 | -0.071094 | 0.275067  | 0.579549  | -0.412137 | 0.349677  | 0.458042  | 0.511663  | 0.485030  | 0.477372  | 0.631697  | 0.389943  | -0.116672 | 0.527525  | 0.516121  | 0.499889  | 0.391544  | 0.449315  | 0.462738  |  |
| s of oxygen a  | $Q_{XX}(U)$                  | -0.076664 | 0.247115  | 0.445633  | 0.317057  | 0.144305  | -0.090334 | 0.098514  | -0.018049 | -0.107429 | -0.028905 | -0.047361 | 0.362088  | 0.352203  | 0.481157  | -0.135649 | 0.310975  | -0.136292 | 0.323228  | 0.310513  | 0.246101  | 0.329067  | 0.189785  | 0.028149  | -0.107390 | 0.032593  | -0.036527 | 0.071888  | -0.030226 | -0.072729 | -0.072334 | -0.012261 | -0.015356 | 0.607021  | -0.107137 | 0.017685  | -0.018847 | -0.036907 | -0.131898 | 0 002243  |  |
| tic descriptor | $\mu_Z(O)$                   | -1.180646 | 0.395526  | 0.129712  | 0.064989  | -0.790955 | -1.006896 | 0.692636  | 0.878948  | -0.951366 | -0.059241 | -0.860290 | 0.129117  | 0.116851  | -0.230201 | -0.184923 | 0.245559  | 0.057337  | 0.119272  | 0.185307  | 0.359629  | -0.176464 | 0.401179  | 0.653469  | -0.003516 | -1.099652 | 0.000018  | -0.000063 | -0.000049 | -0.000053 | -0.046019 | -0.053004 | 0.000005  | 0.000198  | -0.336719 | -0.000028 | -0.00000- | 0.000058  | -0.000015 | 0.000066  |  |
| 4: Electrosta  | $\mu_Y(O)$                   | 0.000000  | 0.596323  | 0.006016  | -0.612289 | -0.109845 | 0.576524  | -0.481097 | -0.529013 | -0.590789 | -1.034134 | -0.509324 | 0.106204  | 0.104483  | 0.050595  | 1.065094  | 0.152471  | 1.082817  | 0.062309  | 0.059783  | -0.546986 | -0.610422 | -0.436459 | 1.161557  | -1.334950 | -0.000359 | -1.135865 | -1.244562 | -1.279603 | -1.176196 | -1.172541 | 1.392011  | 1.186052  | -0.610854 | 1.224841  | -1.351323 | -1.264606 | 1.176186  | -1.237333 | -1.205793 |  |
| Table          | $\mu_X(O)$                   | -0.000002 | 1.023941  | 1.304136  | 1.120775  | 0.921041  | -0.448313 | 0.934269  | 0.729527  | 0.566891  | -0.705663 | 0.466618  | -1.243834 | -1.231113 | -1.199389 | 0.567814  | -1.188354 | 0.573402  | -1.186517 | -1.199109 | 1.038668  | 1.125763  | 0.989819  | -0.231471 | 0.169580  | -0.661349 | -0.284762 | 0.535223  | -0.000320 | 0.309406  | 0.518553  | -0.422031 | 0.528352  | 1.269750  | 0.036841  | 0.039128  | 0.192023  | 0.566952  | -0.074368 | 0.265341  |  |
| - / ( )        | $ \mu(O) $                   | 1.180646  | 1.249199  | 1.310584  | 1.278772  | 1.219013  | 1.243867  | 1.258593  | 1.258814  | 1.255187  | 1.253356  | 1.103287  | 1.255019  | 1.241052  | 1.222328  | 1.221079  | 1.223001  | 1.226610  | 1.194124  | 1.214815  | 1.227745  | 1.292709  | 1.153769  | 1.352707  | 1.345682  | 1.283206  | 1.171016  | 1.354768  | 1.279603  | 1.216211  | 1.282914  | 1.455546  | 1.298412  | 1.409045  | 1.270816  | 1.351889  | 1.279102  | 1.305699  | 1.239566  | 1.234642  |  |
|                | q(O)                         | -1.149522 | -1.179307 | -1.199748 | -1.189916 | -1.164849 | -1.169519 | -1.183586 | -1.183382 | -1.184010 | -1.185881 | -1.142982 | -1.172348 | -1.167698 | -1.113290 | -1.161747 | -1.161132 | -1.162738 | -1.152214 | -1.155377 | -1.172559 | -1.197354 | -1.144202 | -1.195460 | -1.193394 | -1.164204 | -1.090683 | -1.188778 | -1.175132 | -1.143142 | -1.164961 | -1.201112 | -1.178487 | -1.193216 | -1.177362 | -1.195069 | -1.171592 | -1.140875 | -1.114576 | -1.154327 |  |
| }              |                              | 1         | 0         | m         | 4         | S         | 9         | ٢         | 8         | 6         | 10        | 11        | 12        | 13        | 14        | 15        | 16        | 17        | 18        | 19        | 20        | 21        | 22        | 23        | 24        | 25        | 26        | 27        | 28        | 29        | 30        | 31        | 32        | 33        | 34        | 35        | 36        | 37        | 38        | 39        |  |



Figure 1: Williams graph for the regression model of 3 variables.

|    |              |                        | 0 1                        | 20              | <i>.</i>    |              |
|----|--------------|------------------------|----------------------------|-----------------|-------------|--------------|
| ID | $\lambda(O)$ | $\delta_{Bond}(O,A)/2$ | $\delta_{NonBond}(O, A)/2$ | $K_{Scaled}(O)$ | $V_{en}(O)$ | $V_{enO}(O)$ |
| 1  | 8.271619     | 0.750446               | 0.127458                   | -75.922629      | -213.566135 | -184.148104  |
| 2  | 8.296188     | 0.715883               | 0.167236                   | -75.949537      | -228.623517 | -184.291458  |
| 3  | 8.308219     | 0.689973               | 0.201556                   | -75.968299      | -243.831099 | -184.394641  |
| 4  | 8.288003     | 0.690615               | 0.211298                   | -75.648473      | -264.069930 | -184.371380  |
| 5  | 8.255497     | 0.698360               | 0.210992                   | -75.589616      | -285.327766 | -184.268373  |
| 6  | 8.264523     | 0.705081               | 0.199915                   | -75.690741      | -280.762270 | -184.265874  |
| 7  | 8.284062     | 0.711228               | 0.188296                   | -75.961356      | -241.895830 | -184.317627  |
| 8  | 8.283862     | 0.711478               | 0.188043                   | -75.967855      | -250.355997 | -184.316833  |
| 9  | 8.282967     | 0.710431               | 0.190611                   | -75.967721      | -252.628744 | -184.318366  |
| 10 | 8.283339     | 0.708816               | 0.193726                   | -75.972996      | -263.678249 | -184.329863  |
| 11 | 8.220091     | 0.724245               | 0.198646                   | -75.565286      | -297.789600 | -184.208129  |
| 12 | 8.267878     | 0.702953               | 0.201518                   | -75.688527      | -277.897225 | -184.273067  |
| 13 | 8.261745     | 0.705191               | 0.200762                   | -75.618958      | -290.206701 | -184.258011  |
| 14 | 8.190176     | 0.728468               | 0.194646                   | -75.901097      | -288.371872 | -184.588198  |
| 15 | 8.254501     | 0.708293               | 0.198952                   | -75.924233      | -285.843811 | -184.238822  |
| 16 | 8.253191     | 0.708777               | 0.199164                   | -75.923532      | -281.883930 | -184.234495  |
| 17 | 8.255455     | 0.707369               | 0.199915                   | -75.729413      | -294.572678 | -184.242286  |
| 18 | 8.241475     | 0.712549               | 0.198190                   | -75.912552      | -302.521352 | -184.207568  |
| 19 | 8.241413     | 0.710764               | 0.203200                   | -75.728269      | -304.488706 | -184.218372  |
| 20 | 8.263455     | 0.693665               | 0.215439                   | -75.595305      | -286.955711 | -184.310132  |
| 21 | 8.304244     | 0.690056               | 0.203054                   | -75.922790      | -255.074031 | -184.392721  |
| 22 | 8.231432     | 0.707974               | 0.204795                   | -75.888544      | -281.706376 | -184.211160  |
| 23 | 8.264775     | 0.633874               | 0.296811                   | -75.999747      | -284.872019 | -185.027196  |
| 24 | 8.281965     | 0.638448               | 0.272981                   | -75.977689      | -260.556305 | -185.019046  |
| 25 | 8.238043     | 0.639335               | 0.286826                   | -75.889370      | -302.918870 | -184.898426  |
| 26 | 8.131220     | 0.713944               | 0.245519                   | -75.912837      | -319.716679 | -184.549829  |
| 27 | 8.255747     | 0.630245               | 0.302786                   | -75.992005      | -298.713244 | -185.007579  |
| 28 | 8.239289     | 0.645353               | 0.290490                   | -75.920003      | -286.129213 | -184.970159  |
| 29 | 8.212708     | 0.651399               | 0.279035                   | -75.913606      | -297.699381 | -184.835877  |
| 30 | 8.246715     | 0.644306               | 0.273940                   | -75.918172      | -283.575955 | -184.893270  |
| 31 | 8.283844     | 0.627984               | 0.289283                   | -75.972096      | -269.150955 | -184.983825  |
| 32 | 8.275892     | 0.657521               | 0.245074                   | -75.955519      | -245.438617 | -184.949760  |
| 33 | 8.294054     | 0.644248               | 0.254915                   | -75.953393      | -253.660610 | -184.934312  |
| 34 | 8.252149     | 0.680973               | 0.244239                   | -75.983732      | -289.867253 | -184.918306  |
| 35 | 8.267224     | 0.634886               | 0.292959                   | -75.990424      | -273.802476 | -185.030018  |
| 36 | 8.245986     | 0.645858               | 0.279748                   | -75.973240      | -283.018819 | -184.949403  |
| 37 | 8.203727     | 0.700553               | 0.236595                   | -75.976358      | -282.091704 | -184.717610  |
| 38 | 8.156468     | 0.701563               | 0.256544                   | -75.881061      | -324.848183 | -184.633239  |
| 39 | 8.200574     | 0.644640               | 0.309113                   | -75.898650      | -329.251056 | -184.900018  |
| 40 | 8.215100     | 0.636778               | 0.304446                   | -75.900736      | -307.002614 | -184.846288  |

Table 5: Delocalization and energetic descriptors of oxygen atom in the carbonyl group

| ID | Status   | r Exp. | Y-Calc | Y-Pred | Hat   | Err.Calc. | Err.Pred. | Std.Err.Calc. | Std.Err.Pred. |
|----|----------|--------|--------|--------|-------|-----------|-----------|---------------|---------------|
| 1  | Training | 3.36   | 3.17   | 3.15   | 0.113 | -0.19     | -0.21     | -0.16         | -0.19         |
| 2  | Training | -2.85  | -2.75  | -2.73  | 0.185 | 0.1       | 0.12      | 0.09          | 0.11          |
| 3  | Training | -1.05  | -0.82  | -0.77  | 0.206 | 0.23      | 0.28      | 0.21          | 0.27          |
| 4  | Training | -1.66  | -1.35  | -1.32  | 0.095 | 0.31      | 0.34      | 0.27          | 0.3           |
| 5  | Training | -0.07  | -1.1   | -1.18  | 0.079 | -1.03     | -1.11     | -0.89         | -0.97         |
| 6  | Training | -0.21  | -1.32  | -1.39  | 0.062 | -1.11     | -1.18     | -0.95         | -1.01         |
| 7  | Training | 4.45   | 5.04   | 5.2    | 0.213 | 0.59      | 0.75      | 0.55          | 0.7           |
| 8  | Training | -1.79  | -1.87  | -1.88  | 0.098 | -0.08     | -0.09     | -0.07         | -0.08         |
| 9  | Training | -1.25  | -1.51  | -1.54  | 0.117 | -0.26     | -0.29     | -0.23         | -0.26         |
| 10 | Training | -0.96  | -0.28  | -0.21  | 0.092 | 0.68      | 0.75      | 0.59          | 0.65          |
| 11 | Training | -0.74  | -0.48  | -0.45  | 0.085 | 0.26      | 0.29      | 0.23          | 0.25          |
| 12 | Training | 0.32   | 1.04   | 1.12   | 0.093 | 0.72      | 0.8       | 0.63          | 0.7           |
| 13 | Training | -0.47  | 0.2    | 0.25   | 0.066 | 0.67      | 0.72      | 0.58          | 0.62          |
| 14 | Training | -0.78  | -1.64  | -1.83  | 0.18  | -0.86     | -1.05     | -0.79         | -0.96         |
| 15 | Training | 1.54   | 3.67   | 4.06   | 0.154 | 2.13      | 2.52      | 1.93          | 2.28          |
| 16 | Training | -10.42 | -9.55  | -9.43  | 0.119 | 0.87      | 0.99      | 0.77          | 0.87          |
| 17 | Training | 1.89   | 1.04   | 0.85   | 0.184 | -0.85     | -1.04     | -0.78         | -0.96         |
| 18 | Training | -6.66  | -6.31  | -6.27  | 0.099 | 0.35      | 0.39      | 0.31          | 0.34          |
| 19 | Training | -0.9   | -3.35  | -3.78  | 0.15  | -2.45     | -2.88     | -2.21         | -2.6          |
| 20 | Training | -2.92  | -5.79  | -5.98  | 0.062 | -2.87     | -3.06     | -2.47         | -2.63         |
| 21 | Training | -14.2  | -13.89 | -13.76 | 0.307 | 0.31      | 0.44      | 0.31          | 0.44          |
| 22 | Training | -6.6   | -7.32  | -7.5   | 0.2   | -0.72     | -0.9      | -0.67         | -0.83         |
| 23 | Training | -13.8  | -13.06 | -12.66 | 0.348 | 0.74      | 1.14      | 0.76          | 1.17          |
| 24 | Training | -9.43  | -9.56  | -9.57  | 0.108 | -0.13     | -0.14     | -0.11         | -0.12         |
| 25 | Training | -9.21  | -6.46  | -6.15  | 0.103 | 2.75      | 3.06      | 2.41          | 2.69          |
| 26 | Training | -0.48  | -1.03  | -1.11  | 0.127 | -0.55     | -0.63     | -0.49         | -0.56         |
| 27 | Training | -4.24  | -4.21  | -4.2   | 0.157 | 0.03      | 0.04      | 0.03          | 0.03          |
| 28 | Training | -9.2   | -8.85  | -8.77  | 0.196 | 0.35      | 0.43      | 0.32          | 0.4           |

Table 6: Experimental and predicted values, and errors in the prediction, for the training and test compounds

Table 7: Experimental and predicted values, and errors in the prediction, for the training and test compounds, cont.

|    | 14010 7. | Ехреник | intai anu p | iculcicu v | aiues, ai | iu chois in i | ine predictio | n, for the trainin | ig and test compo |
|----|----------|---------|-------------|------------|-----------|---------------|---------------|--------------------|-------------------|
| ID | Status   | Y Exp.  | Y-Calc      | Y-Pred     | Hat       | Err.Calc.     | Err.Pred.     | Std.Err.Calc.      | Std.Err.Pred.     |
| 29 | Test     | 0.03    | -           | -0.12      | 0.101     | -             | -0.15         | -                  | -                 |
| 30 | Test     | 1       | -           | 1.63       | 0.131     | -             | 0.63          | -                  | -                 |
| 31 | Test     | -0.08   | -           | -1.1       | 0.078     | -             | -1.02         | -                  | -                 |
| 32 | Test     | -0.63   | -           | -1.29      | 0.059     | -             | -0.66         | -                  | -                 |
| 33 | Test     | -1.35   | -           | -1.17      | 0.088     | -             | 0.18          | -                  | -                 |
| 34 | Test     | -0.77   | -           | -0.34      | 0.086     | -             | 0.43          | -                  | -                 |
| 35 | Test     | 0.46    | -           | 1.44       | 0.141     | -             | 0.98          | -                  | -                 |
| 36 | Test     | -8.2    | -           | -8.59      | 0.083     | -             | -0.39         | -                  | -                 |
| 37 | Test     | -4.34   | -           | -5.51      | 0.053     | -             | -1.17         | -                  | -                 |
| 38 | Test     | -10.07  | -           | -9.92      | 0.109     | -             | 0.15          | -                  | -                 |
| 39 | Test     | -10.22  | -           | -8.65      | 0.352     | -             | 1.57          | -                  | -                 |
| 40 | Test     | -5.18   | -           | -4.4       | 0.092     | -             | 0.78          | -                  | -                 |
|    |          |         |             |            |           |               |               |                    |                   |

|   | -               | ruble of regression e | concepting concepting | to the descriptors   | mended in the best |
|---|-----------------|-----------------------|-----------------------|----------------------|--------------------|
|   | Variable        | Regression Coeff.     | Errors Reg.Coeff.     | Conf.Intervals (.95) | Std. Reg.Coeff.    |
| - | Intercept       | 59.4                  | 5.95                  | 12.27                | -                  |
| 1 | $Q_{\sigma}(C)$ | -9.68                 | 2.4                   | 4.94                 | -0.27              |
| 2 | $ \mu(O) $      | -35.68                | 4.54                  | 9.38                 | -0.55              |
| 3 | $Q_{\pi}(O)$    | 8.36                  | 2.47                  | 5.09                 | 0.28               |

Table 8: Regression coefficients corresponding to the descriptors included in the best model built.

Table 9: Statistical parameters corresponding to the best model built.

| $R^2$          | 94.68  |
|----------------|--------|
| $Q^2$          | 93.11  |
| $Q_{boot}^2$   | 92.8   |
| $Q^2_{ext}$    | 96.04  |
| SDEPext        | 0.8    |
| $a(R^2)$       | 0.089  |
| $a(Q^2)$       | -0.246 |
| $R^2_{adi}$    | 94.02  |
| LOF            | 2.006  |
| AIC            | 1.926  |
| $K_x$          | 67.13  |
| $K_{xy}$       | 76.4   |
| $SD\check{E}P$ | 1.267  |
| SDEC           | 1.113  |
| F              | 142.44 |
| s              | 1.202  |
| DF             | 24     |
| DK             | 0.093  |
| DQ             | 0.003  |
| RP             | 0.005  |
| RN             | 0      |
| TSS            | 652.09 |
| AVH            | 0.143  |
|                |        |

Table 10: Values of the descriptors of reaction 1

| Hep-dio-A | q(C)   | $ \mu(CO) $ | $Q_{EigVal1}(C)$ | $\kappa$    |
|-----------|--------|-------------|------------------|-------------|
| 1         | 1.0624 | 1.38523268  | -1.210905        | -1.05461836 |
| 7         | 1.0596 | 1.42428618  | -1.221972        | -2.03982091 |
| 11        | 1.0518 | 1.37368428  | -1.214872        | -0.81261386 |

Table 11: Values of the descriptors of reaction 2

| Table 11. Values of the descriptors of federion 2 |        |             |                  |             |  |  |  |  |
|---------------------------------------------------|--------|-------------|------------------|-------------|--|--|--|--|
| As-A-Me                                           | q(C)   | $ \mu(CO) $ | $Q_{EigVal1}(C)$ | $\kappa$    |  |  |  |  |
| 7                                                 | 1.6274 | 1.36142293  | -1.467414        | -2.24767095 |  |  |  |  |
| 8                                                 | 1.6376 | 1.34740283  | -1.497544        | -2.12634757 |  |  |  |  |

|   |        | values of the | e descriptors of f | eaction 5  |
|---|--------|---------------|--------------------|------------|
| Χ | q(C)   | $ \mu(CO) $   | $Q_{EigVal1}(C)$   | $\kappa$   |
| 1 | 1.8950 | 1.7619110     | -1.876631          | -14.365721 |
| 2 | 1.0525 | 1.3758467     | -1.280461          | -1.309882  |
| 3 | 1.6137 | 1.4935220     | -1.582851          | -6.111606  |
| 4 | 1.0579 | 1.2168798     | -1.408524          | 1.520880   |
| 5 | 0.7074 | 1.2081774     | -1.111323          | 3.748597   |
| 6 | 1.8984 | 1.3616048     | -1.907395          | -5.249726  |
| 7 | 1.8337 | 1.7288674     | -1.893144          | -13.708443 |
| 8 | 1.0262 | 1.3037136     | -1.178814          | 1.063117   |
| 9 | 1.6188 | 1.5809112     | -1.449182          | -7.236685  |

Table 12: Values of the descriptors of reaction 3

Table 13: Values of the descriptors during the reaction between cyclohexanone and Lithium aluminium hydride  $\mu(O)$ 

|    |             |       |        |         |            | $\mu(O)$   |            |         |            |         |
|----|-------------|-------|--------|---------|------------|------------|------------|---------|------------|---------|
|    | Step        | Point | N(O)   | q(O)    | $\mu_x(O)$ | $\mu_y(O)$ | $\mu_Z(O)$ | Q(O)    | $ \mu(O) $ | k       |
|    | Reactant    |       | 9.1641 | -1.1641 | 1.1370     | -0.4251    | 0.0091     | -0.2419 | 1.2139     | 26.2469 |
|    | reactant-Al | -11   | 9.2560 | -1.2560 | 1.6626     | 0.1188     | 0.0144     | -0.4053 | 1.6669     | 11.4169 |
|    | 10          | -10   | 9.3130 | -1.3130 | -0.1027    | -0.9167    | -0.0045    | -0.5878 | 0.9289     | 36.2529 |
|    | 9           | -9    | 9.3143 | -1.3143 | -0.1237    | -0.9134    | -0.0045    | -0.5992 | 0.9218     | 36.6828 |
|    | 8           | -8    | 9.3158 | -1.3158 | -0.1446    | -0.9107    | -0.0046    | -0.6108 | 0.9221     | 37.0526 |
|    | 7           | -7    | 9.3174 | -1.3174 | -0.1680    | -0.9085    | -0.0046    | -0.6244 | 0.9239     | 37.4280 |
|    | 6           | -6    | 9.3190 | -1.3190 | -0.1926    | -0.9068    | -0.0046    | -0.6392 | 0.9271     | 37.7993 |
| R  | 5           | -5    | 9.3207 | -1.3207 | -0.2190    | -0.9061    | -0.0046    | -0.6562 | 0.9322     | 38.1539 |
|    | 4           | -4    | 9.3224 | -1.3224 | -0.2460    | -0.9065    | -0.0047    | -0.6749 | 0.9393     | 38.3866 |
|    | 3           | -3    | 9.3242 | -1.3242 | -0.2752    | -0.9079    | -0.0047    | -0.6968 | 0.9487     | 38.5153 |
|    | 2           | -2    | 9.3260 | -1.3260 | -0.3054    | -0.9103    | -0.0047    | -0.7213 | 0.9602     | 38.4350 |
|    | 1           | -1    | 9.3279 | -1.3279 | -0.3380    | -0.9144    | -0.0048    | -0.7503 | 0.9749     | 38.1934 |
| TS |             | 0     | 9.3298 | -1.3298 | -0.3723    | -0.9202    | -0.0048    | -0.7844 | 0.9927     | 37.6792 |
|    | 1           | 1     | 9.3318 | -1.3318 | -0.4042    | -0.9268    | -0.0049    | -0.8198 | 1.0111     | 36.9465 |
|    | 2           | 2     | 9.3338 | -1.3338 | -0.4354    | -0.9354    | -0.0049    | -0.8601 | 1.0317     | 35.8395 |
|    | 3           | 3     | 9.3358 | -1.3358 | -0.4651    | -0.9462    | -0.0050    | -0.9062 | 1.0544     | 34.3833 |
|    | 4           | 4     | 9.3375 | -1.3375 | -0.4921    | -0.9581    | -0.0051    | -0.9570 | 1.0771     | 32.9067 |
| F  | 5           | 5     | 9.3386 | -1.3386 | -0.5154    | -0.9692    | -0.0052    | -1.0099 | 1.0977     | 31.6444 |
|    | 6           | 6     | 9.3385 | -1.3385 | -0.5345    | -0.9732    | -0.0053    | -1.0573 | 1.1103     | 30.7308 |
|    | 7           | 7     | 9.3388 | -1.3388 | -0.5496    | -0.9704    | -0.0053    | -1.0942 | 1.1153     | 30.1777 |
|    | 8           | 8     | 9.3398 | -1.3398 | -0.5603    | -0.9613    | -0.0053    | -1.1198 | 1.1127     | 29.8688 |
|    | 9           | 9     | 9.3414 | -1.3414 | -0.5651    | -0.9449    | -0.0052    | -1.1305 | 1.1010     | 29.9933 |
|    | 10          | 10    | 9.3429 | -1.3429 | -0.5671    | -0.9282    | -0.0051    | -1.1385 | 1.0877     | 30.1623 |
|    | product-Al  | 22    | 9.3561 | -1.3561 | -0.5447    | -0.8164    | -0.0052    | -1.1725 | 0.9814     | 31.4156 |
|    | Product     |       | 9.0970 | -1.0970 | 0.8444     | -0.3056    | -0.0007    | -0.9657 | 0.8980     | 27.8300 |

|    |             |       |        |        |            | $\mu(C)$   |            |         |            |             |
|----|-------------|-------|--------|--------|------------|------------|------------|---------|------------|-------------|
|    | Step        | Point | N(C)   | q(C)   | $\mu_x(C)$ | $\mu_y(C)$ | $\mu_Z(C)$ | Q(C)    | $ \mu(C) $ | $ \mu(CO) $ |
|    | Reactant    |       | 4.9682 | 1.0318 | 0.0943     | -0.0389    | 0.0007     | -1.2367 | 0.1020     | 1.3159      |
|    | reactant-Al | -11   | 5.0318 | 0.9682 | 0.3137     | 0.0074     | 0.0036     | -0.9839 | 0.3138     | 1.9804      |
|    | 10          | -10   | 5.0711 | 0.9289 | 0.5221     | 0.5948     | 0.0040     | -0.7843 | 0.7914     | 0.5286      |
|    | 9           | -9    | 5.0737 | 0.9263 | 0.5123     | 0.5956     | 0.0040     | -0.7783 | 0.7856     | 0.5021      |
|    | 8           | -8    | 5.0757 | 0.9243 | 0.5023     | 0.5954     | 0.0040     | -0.7686 | 0.7789     | 0.4768      |
|    | 7           | -7    | 5.0786 | 0.9214 | 0.4911     | 0.5938     | 0.0039     | -0.7584 | 0.7706     | 0.4510      |
|    | 6           | -6    | 5.0828 | 0.9172 | 0.4823     | 0.5917     | 0.0040     | -0.7532 | 0.7634     | 0.4281      |
| R  | 5           | -5    | 5.0878 | 0.9122 | 0.4710     | 0.5899     | 0.0036     | -0.7448 | 0.7549     | 0.4043      |
|    | 4           | -4    | 5.0926 | 0.9074 | 0.4585     | 0.5861     | 0.0032     | -0.7314 | 0.7441     | 0.3845      |
|    | 3           | -3    | 5.0987 | 0.9013 | 0.4455     | 0.5781     | 0.0036     | -0.7198 | 0.7298     | 0.3712      |
|    | 2           | -2    | 5.1048 | 0.8952 | 0.4284     | 0.5658     | 0.0031     | -0.7020 | 0.7097     | 0.3658      |
|    | 1           | -1    | 5.1132 | 0.8868 | 0.4090     | 0.5505     | 0.0031     | -0.6870 | 0.6858     | 0.3707      |
| TS |             | 0     | 5.1235 | 0.8765 | 0.3839     | 0.5310     | 0.0042     | -0.6700 | 0.6553     | 0.3893      |
|    | 1           | 1     | 5.1352 | 0.8648 | 0.3581     | 0.5095     | 0.0031     | -0.6533 | 0.6227     | 0.4198      |
|    | 2           | 2     | 5.1471 | 0.8529 | 0.3277     | 0.4796     | 0.0032     | -0.6324 | 0.5808     | 0.4684      |
|    | 3           | 3     | 5.1600 | 0.8400 | 0.2918     | 0.4418     | 0.0020     | -0.6072 | 0.5294     | 0.5334      |
|    | 4           | 4     | 5.1747 | 0.8253 | 0.2553     | 0.3996     | 0.0024     | -0.5950 | 0.4742     | 0.6066      |
| F  | 5           | 5     | 5.1889 | 0.8111 | 0.2165     | 0.3553     | 0.0024     | -0.6095 | 0.4161     | 0.6828      |
|    | 6           | 6     | 5.2023 | 0.7977 | 0.1874     | 0.3195     | 0.0030     | -0.6242 | 0.3704     | 0.7402      |
|    | 7           | 7     | 5.2115 | 0.7885 | 0.1657     | 0.2936     | 0.0023     | -0.6389 | 0.3372     | 0.7781      |
|    | 8           | 8     | 5.2171 | 0.7829 | 0.1490     | 0.2751     | 0.0024     | -0.6484 | 0.3129     | 0.8000      |
|    | 9           | 9     | 5.2182 | 0.7818 | 0.1421     | 0.2696     | 0.0023     | -0.6550 | 0.3048     | 0.7968      |
|    | 10          | 10    | 5.2185 | 0.7815 | 0.1362     | 0.2658     | 0.0025     | -0.6596 | 0.2987     | 0.7902      |
|    | product-Al  | 22    | 5.2146 | 0.7854 | 0.1025     | 0.2296     | 0.0013     | -0.6824 | 0.2514     | 0.7348      |
|    | Product     |       | 5.4511 | 0.5489 | -0.0206    | 0.0374     | 0.0010     | -0.5677 | 0.0427     | 0.8663      |

Table 14: Values of the descriptors during the reaction between cyclohexanone and Lithium aluminium hydride. cont.

|    |             |       |        |         |            | $\mu(H)$   |            |         |            |
|----|-------------|-------|--------|---------|------------|------------|------------|---------|------------|
|    | Step        | Point | N(H)   | q(H)    | $\mu_x(H)$ | $\mu_y(H)$ | $\mu_Z(H)$ | Q(H)    | $ \mu(H) $ |
|    | Reactant    |       | -      | -       | -          | -          | -          | -       | -          |
|    | reactant-Al | -11   | 1.8232 | -0.8232 | -0.0830    | 0.9522     | 0.0074     | -0.9157 | 0.9559     |
|    | 10          | -10   | 1.7115 | -0.7115 | 0.1298     | 0.3661     | 0.0034     | -0.6483 | 0.3885     |
|    | 9           | -9    | 1.7048 | -0.7048 | 0.1325     | 0.3669     | 0.0034     | -0.6388 | 0.3901     |
|    | 8           | -8    | 1.6979 | -0.6979 | 0.1354     | 0.3668     | 0.0032     | -0.6310 | 0.3910     |
|    | 7           | -7    | 1.6897 | -0.6897 | 0.1381     | 0.3655     | 0.0030     | -0.6214 | 0.3907     |
|    | 6           | -6    | 1.6807 | -0.6807 | 0.1405     | 0.3629     | 0.0029     | -0.6120 | 0.3892     |
| R  | 5           | -5    | 1.6701 | -0.6701 | 0.1432     | 0.3594     | 0.0028     | -0.6012 | 0.3869     |
|    | 4           | -4    | 1.6582 | -0.6582 | 0.1463     | 0.3553     | 0.0029     | -0.5873 | 0.3843     |
|    | 3           | -3    | 1.6442 | -0.6442 | 0.1483     | 0.3491     | 0.0028     | -0.5731 | 0.3793     |
|    | 2           | -2    | 1.6283 | -0.6283 | 0.1482     | 0.3406     | 0.0027     | -0.5562 | 0.3715     |
|    | 1           | -1    | 1.6091 | -0.6091 | 0.1462     | 0.3294     | 0.0026     | -0.5390 | 0.3604     |
| TS |             | 0     | 1.5862 | -0.5862 | 0.1410     | 0.3150     | 0.0023     | -0.5128 | 0.3452     |
|    | 1           | 1     | 1.5618 | -0.5618 | 0.1330     | 0.2994     | 0.0023     | -0.4872 | 0.3277     |
|    | 2           | 2     | 1.5343 | -0.5343 | 0.1229     | 0.2809     | 0.0018     | -0.4595 | 0.3066     |
|    | 3           | 3     | 1.5027 | -0.5027 | 0.1101     | 0.2607     | 0.0019     | -0.4251 | 0.2830     |
|    | 4           | 4     | 1.4689 | -0.4689 | 0.0952     | 0.2392     | 0.0017     | -0.3902 | 0.2574     |
| F  | 5           | 5     | 1.4356 | -0.4356 | 0.0793     | 0.2178     | 0.0017     | -0.3569 | 0.2318     |
|    | 6           | 6     | 1.4096 | -0.4096 | 0.0652     | 0.1996     | 0.0014     | -0.3308 | 0.2099     |
|    | 7           | 7     | 1.3914 | -0.3914 | 0.0550     | 0.1864     | 0.0010     | -0.3159 | 0.1943     |
|    | 8           | 8     | 1.3789 | -0.3789 | 0.0473     | 0.1773     | 0.0007     | -0.3060 | 0.1835     |
|    | 9           | 9     | 1.3752 | -0.3752 | 0.0446     | 0.1755     | 0.0008     | -0.3060 | 0.1811     |
|    | 10          | 10    | 1.3735 | -0.3735 | 0.0430     | 0.1754     | 0.0008     | -0.3058 | 0.1806     |
|    | product-Al  | 22    | 1.3630 | -0.3630 | 0.0218     | 0.1740     | 0.0013     | -0.2904 | 0.1754     |
|    | Product     |       | 0.4454 | -0.0216 | 0.1075     | 0.1093     | 0.0007     | -0.1735 | 0.1533     |

Table 15: Values of the descriptors during the reaction between cyclohexanone and Lithium aluminium hydride. cont.