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SURFACE COVERAGE

As discussed in the main text, the probability that a site is occupied obeys the recurrence relation

dPon(t)

dt
= kPoff(t)−

∫ t

0

kPoff(t′)ψ(t− t′)dt′, (1)

where Pon(t) is the probability of the site being occupied and Poff(t) is the probability of the site being empty at time
t,

Poff(t) + Pon(t) = 1, (2)

and for notation simplicity we have used k = kadsA1, where kads is the adsorption rate with units of µm−2s−1 and A1

is the area of a single site. Because dPon(t)
dt = −dPoff (t)

dt , we can rewrite Eq. (1) as

dPoff(t)

dt
= −k

[
Poff(t)−

∫ t

0

Poff(t′)ψ(t− t′)dt′
]
. (3)

The second term on the right has the form of a convolution and can thus be solved using a Laplace transform,

sPoff(s)− 1 = −k [Poff(s)− Poff(s)ψ(s)] , (4)

where we have assumed the site is empty at t = 0, i.e. Poff(t = 0) = 1. We can obtain the Laplace transform of ψ(t)
by using the Tauberian theorem on the survival probability [1]. Namely, given S(t) ∼ S0/t

α we obtain

S(s) = S0Γ(1− α)sα−1 (5)

in the small s limit. Then we can find ψ(s) from the relation

S(t) = 1−
∫ ∞
t

ψ(t′)dt′ (6)

that yields ψ(s) = 1− sS(s). Thus

ψ(s) = 1− S0Γ(1− α)sα. (7)

Combining Eq. (7) and Eq. (4), we can solve for Poff(s):

Poff(s) =
1

s+ kS0Γ(1− α)sα
(8)

and in the limit s→ 0, it is further simplified into

Poff(s) =
1

kS0Γ(1− α)sα
(9)

when α < 1. Again using the Tauberian theorem, we can invert Poff(s):

Poff(t) ∼ tα−1

kS0Γ(1− α)Γ(α)
. (10)
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By using Eq. (2), we can find the time dependence of Pon,

Pon(t) ∼ 1− tα−1

kS0Γ(1− α)Γ(α)
. (11)

At last, the surface density is

ρ(t) =
Pon(t)

A1
. (12)

MULTIMERIC DESORPTION MODEL

The desorption reaction for a multimer of n monomers can be written as

Mn

na−−→←−−
b

Mn−1

(n−1)a−−−−−→←−−−−−
2b

· · ·
3a−−−−−→←−−−−−

(n−2)b
M2

2a−−−−−→←−−−−−
(n−1)b

M1
a−−→M0. (13)

To provide an example of how we solve the temporal evolution of this reaction we employ the case n = 3. In this
case, the reaction simplifies to

M3

3a−−→←−−
b

M2

2a−−→←−−
2b

M1
a−−→M0. (14)

Casting this reaction into a set of differential equations yields

dp3

dt
= −3a p3 + b p2

dp2

dt
= 3a p3 − (2a+ b) p2 + 2b p1

dp1

dt
= 2a p2 − (a+ 2b) p1

dp0

dt
= a p1.

Considering that when a molecule adsorbs to the surface it should bind via one of its monomers, the initial condition is
setting the system in state M1. However, the long-time evolution of the system is not sensitive to its initial condition
(as long as it is not in state M0). Thus we set p1(0) = 1 and p0(0) = p2(0) = p3(0) = 0. In order to solve the set of
differential equations we employ a Laplace transform,

sp3(s) = −3a p3(s) + b p2(s)

sp2(s) = 3a p3(s)− (2a+ b) p2(s) + 2b p1(s)

sp1(s)− 1 = 2a p2(s)− (a+ 2b) p1(s)

sp0(s) = a p1(s).

which is solved to yield

p0(s) =
a
[
6a2 + (5a+ b)s+ s2

]
s [6a3 + (11a2 + 7ab+ 2b2)s+ (6a+ 3b)s2 + s3]

. (15)

To solve for the long time asymptote, we consider the small s behavior,

p0(s) =
6a3

s [6a3 + (11a2 + 7ab+ 2b2)s]
. (16)

The inverse Laplace transform of p0(s) is

p0(t) = 1− exp(−k3t), (17)
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where

k3 =
6a3

11a2 + 7ab+ 2b2
. (18)

Further, when the adsorption is faster than desorption as should be the case for a particle on the surface, we have
a� b and we can rewrite Eq. (18) as

k3 = 3
a3

b2
. (19)

Following the same methodology, it is shown for any chosen n, in the limit a� b, that

kn = n
an

bn−1
. (20)

DISTRIBUTION OF MULTIMER SIZES

Individual proteins in solution can spontaneously overcome a free energy barrier to dimerize. Subsequently, this
soluble dimer can dissociate into single monomers or spontaneously associate to another monomer to form a soluble
trimer, and so on. The overall reaction can be described as

1 −−→←−− 2 −−→←−− 3 −−→←−− · · · (21)

Assuming that each additional monomer requires a free energy ∆F , the overall energy of a multimer of size n is n∆F .
In thermodynamic equilibrium the system obeys a Boltzmann distribution,

p(n) = c exp(−n∆F/kBT ) (22)

where kBT is thermal energy and c is a normalization constant. The characteristic number of monomers is n0 =
kBT∆F and the normalization constant is c = exp(1/n0)− 1.

MULTIMERIC DESORPTION WHEN a/b 6� 1

When a/b 6� 1, we cannot neglect higher order terms in a/b that lead to Eq. (19) and Eq. (20). Without these
approximation, we were unable to obtain a full expression for any number of monomers n. Here, we solve for the first
six terms in S(τ) =

∑
n Sn(τ)p(n), where Sn(τ) = exp(−knτ), and p(n) follows a Boltzmann distribution (Eq. (22)).

Solving the multimer desorption reaction (Eq. (13)) for 1 ≤ n ≤ 5 yields

k1 = a

k2 =
2a2

b+ 3a

k3 =
3! a3

2b2 + 7ab+ 11a2

k4 =
4! a4

3! b3 + 26ab2 + 46a2b+ 50a3

k5 =
5! a5

4! b4 + 126ab3 + 274a2b2 + 326a3b+ 274a4

Given these five terms, the survival probability S(τ) using a/b = 0.57 as found for the high density PEG is shown in
Fig. S7.
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Photobleaching decay

The time over which a fluorophore emits fluorescence is an exponential random variable, with PDF p(t) =
t−1
pb exp(−t/tpb), where tpb is the characteristic photobleaching time. Nevertheless, a single protein is labeled with

multiple fluorophores (3 to 6 in our case) and, as a consequence, the bleaching time for a single protein with n fluo-
rophores is the time of the last surviving one. Let us consider n indendent, identically distributed (iid) times ti with
cumulative distribution function (CDF) F1(t), and the maximum of these times tMax = max{ti}. The CDF of tMax

is the nth power of the CDF of t [2],

Fn(tMax) = [F1(tM )]n. (23)

For n exponential iid random variables, we obtain Fn(tMax) = [1− exp(−tMax/tpb)]
n and thus,

fn(tMax) =
n

tpb
exp(−tMax/tpb) [1− exp(−tMax/tpb)]

n−1
. (24)

In the case of BSA photbleaching the distribution of times is actually more complex because the number of fluorophores
n is not fixed and its distribution is unknown. A first order approximation is only useful as an order of magnitude
estimate and yields tpb = 2000 s for the survival probability with time-lapse imaging (Fig. 1(a) in the main text), and
tpb = 200 s under continuous illumination (Fig. S2).

[1] Joseph Klafter and Igor M Sokolov, First steps in random walks: from tools to applications (Oxford University Press, 2011).
[2] Oliver C. Ibe, Fundamentals of applied probability and random processes (Academic Press, 2014).
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FIG. S1. Distribution of displacements along the projection on the x axis, ∆x, for times equal to one frame (2 s) and five
frames (10 s) for BSA molecules on a single PEG surface. Ignoring minor statistical errors, the two distributions are identical.
The width of both distributions is dictated by the localization error of molecule detection. n = 238, 415 displacements for a
lag time tlag = 1 frame and n = 169, 642 displacements for tlag = 5 frames.
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FIG. S2. The survival probability of BSA molecules on PEG surface. The data is similar to that of Fig. 1a in the main
text, but the fluorophores are continually excited and the frame rate is 20 fold higher. As a consequence, the decay due to
photobleaching takes place in a shorter timescale.
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FIG. S3. Measurements of the distribution of Stokes hydrodynamic radii using dynamic light scattering (DLS). (a) Distributions
of radii in a freshly prepared BSA solution and in a solution that was allowed to settle for a period of 90 minutes. The two
distributions do not appear to be significantly different. (b) The distribution of radii is fit to a model where molecules are
allowed to become multimers and they are in equilibrium, so that the multimer size follows a Boltsmann distribution. A least
square fit to Eq. 12 in the main text (shown as a red line) yields A1 = 0.49, s = 0.4, and w = 0.49 nm. The first six Gaussian
terms of the sum in Eq. 12 are shown as blue lines.
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FIG. S4. Survival probability S(τ) according to the multimer model presented in the main text exhibits a power law tail.
The dwell time of particles on the surface obeys an exponential distribution, Sn(τ) = exp(−knτ), with mean time, 1/kn that
depends on the number of monomers within the adsorbed particle. The a priori probability is given by S(τ) =

∑∞
n=1 Sn(τ)p(n)

where p(n) is the probability of the particle having n monomers and it obeys a Boltzmann distribution with characteristic
number of monomers n0. (a) Survival probability for different n0 values. Note that larger n0 means higher probability of the
proteins to self-associate. Binding coefficient is b = 1 and unbinding rate is a = 0.1. (b) Survival probability for different
surface dissociation coefficients a. Binding coefficient is b = 1 and characteristic number of monomers is n0 = 1. (c) Survival
probability for different surface binding affinities b. Dissociation coefficient is a = 0.1 and characteristic number of monomers
is n0 = 1. Note that when the ratio a/b is very low, the survival probability also exhibits oscillations because the different
modes separate in time.



7

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

a/b

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5
α

1/n
0

α

(a) (b)

FIG. S5. Anomalous exponent α in the multimer model, where S(τ) =
∑∞
n=1 Sn(τ)p(n) and S(τ) ∼ τ−α. The exponent α is

shown for different choices of parameters n0 (characteristic number of monomers in adsorbed particle) and a and b (dissociation
and association coefficients, respectively). (a) α is shown as a function of 1/n0 to highlight the behavior S ∼ 1/n0. (b) α is
shown as a function of a/b. Different sets of a and b values are used but they all fall within a master curve that only depends
on a and b via their ratio a/b.
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FIG. S6. Survival probability S(τ) for the surface dwell times of BSA molecules on high density PEG surface.
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FIG. S7. Survival probability S(τ) according to the multimer model when the approximation a/b � 1 does not hold. Here,
a/b = 0.57. Namely, n0 = 1, a = 0.57, and b = 1. Only the first five modes of kn are used. The thin blue lines show
the contribution of each of these modes to the survival probability: p(n) exp(−knτ). The thick red line shows the survival
probability: S(τ) =

∑5
n=1 Sn(τ)p(n). This survival probability also shows a power law tail.


