Supplementary Information Water dynamics at electrified graphene interfaces: a jump model perspective

Yiwei Zhang,[†] Guillaume Stirnemann,[‡] James T. Hynes,^{†,¶} and Damien Laage^{*,†}

†PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France

‡CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL
 University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
 ¶Department of Chemistry, University of Colorado, Boulder, CO 80309, USA

E-mail: damien.laage@ens.fr

Figure S1: Total electrode charge variations with electrode potential. The potential at the point of zero charge is approximately -0.02 V.

Table S1: Parameters of extended jump model for water molecules at the negatively charged graphene interface (see eqn 2). $p^{S,W}$ are the fractions of OH groups in each population, and $p^{W\to S}$ the probability to jump to state S when starting from state W. The jump times at the negative electrode consider all H-bond jumps from the specified initial state to any new acceptor in the S, W and bulk states (jump times at the positive electrode in fig 4 do not consider the S state which is unstable at these potentials). The jump angles are taken to be $\Delta \theta^{WW} = 68^{\circ 1}$ and $\Delta \theta^{SW} = 90^{\circ}$ based on figure 2; no frame reorientation is considered in state S because the graphene interface is fixed. The extended jump model average reorientation time in the interfacial water layer is determined as $\langle \tau_{\text{reor}}^{\text{EJM}} \rangle = p^{S} \tau_{\text{reor}}^{S} + p^{W} \tau_{\text{reor}}^{W}$. The EJM eqn 2 is applied to the W and S states to obtain $\tau_{\text{reor}}^{S,W}$, as described in eqn S1, where the two possible jump types starting from an initial W state are considered.

Potential (V)	$ au_{\text{jump}}$ (ps)	$\tau_{\rm jump}^{\rm W}$ (ps)	$\tau_{\rm frame}^{\mathbf{W}} \ (ps)$	$p^{\mathbf{S}}$	$p^{\mathbf{W}}$	$p^{W \to S}$	$\langle \tau_{\rm reor}^{\rm EJM} \rangle ~({\rm ps})$
0	1.1	3.82	8.7	0.08	0.92	0.3	3.64
-0.25	1.5	3.78	7.5	0.11	0.89	0.3	3.34
-0.5	1.7	3.57	6.7	0.13	0.87	0.3	3.07
-1	2.3	3.58	6.0	0.17	0.83	0.3	2.92
-1.5	2.9	3.62	6.1	0.20	0.80	0.3	3.01
-2.5	3.7	3.7	6.7	0.23	0.77	0.3	3.28

$$\frac{1}{\tau_{\text{reor}}^{\mathbf{S}}} = \frac{1}{\tau_{\text{jump}}^{\mathbf{S}}} \left[1 - \frac{1}{5} \frac{\sin\left(5\Delta\theta^{\mathbf{SW}}/2\right)}{\sin\left(\Delta\theta^{\mathbf{SW}}/2\right)} \right]$$

$$\frac{1}{\tau_{\text{reor}}^{\mathbf{W}}} = \frac{1 - p^{W \to S}}{\tau_{\text{jump}}^{\mathbf{W}}} \left[1 - \frac{1}{5} \frac{\sin\left(5\Delta\theta^{\mathbf{WW}}/2\right)}{\sin\left(\Delta\theta^{\mathbf{WW}}/2\right)} \right]$$

$$+ \frac{p^{W \to S}}{\tau_{\text{jump}}^{\mathbf{W}}} \left[1 - \frac{1}{5} \frac{\sin\left(5\Delta\theta^{\mathbf{SW}}/2\right)}{\sin\left(\Delta\theta^{\mathbf{SW}}/2\right)} \right] + \frac{1}{\tau_{\text{frame}}^{\mathbf{W}}} (S1)$$

Figure S2: Oxygen radial distribution function around water oxygen atoms within the negative interface first hydration layer.

References

 Laage, D.; Hynes, J. T. On the Molecular Mechanism of Water Reorientation. J Phys Chem B 2008, 112, 14230–14242.