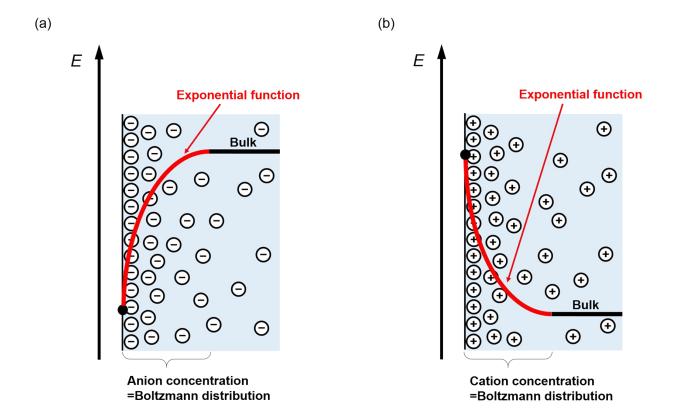
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020


Supporting Information

Chemical Potentials of Electric Double Layers at Metal-Electrolyte Interfaces: Dependence on Electrolyte Concentration and Electrode Materials, and Application to Field-Effect Transistors

Chihiro Nanjo,^a Daisuke Yokogawa,^b Michio M. Matsushita^a and Kunio Awaga*^a

^aDepartment of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

^bGraduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan

Scheme S1 The Gouy-Chapman model: the concentration distribution of ions follows the Boltzmann distribution, and the potential follows the exponential function. Panels (a) and (b) show the cases of anions and cations, respectively.

Conversion of $V_{\rm MR}$ to $E_{\rm M}$

The potential energies of metal electrodes $E_{\rm M}$ were obtained, using the following equation:

$$E_M = -eV_{MR} + E_R \,, \tag{S1}$$

which was from eq. (1). Since the potential energy of SHE was reported as -4.44 eV,¹ and that of the present Ag/AgCl reference electrode was -0.195 eV (vs. SHE at 298 K), E_R of this reference electrode was calculated as -4.64 eV.

Derivation of eq. (7)

Using the Gouy-Chapman model, the relation between the surface charge q and the electric potential ψ on the surface of metal electrode is expressed as

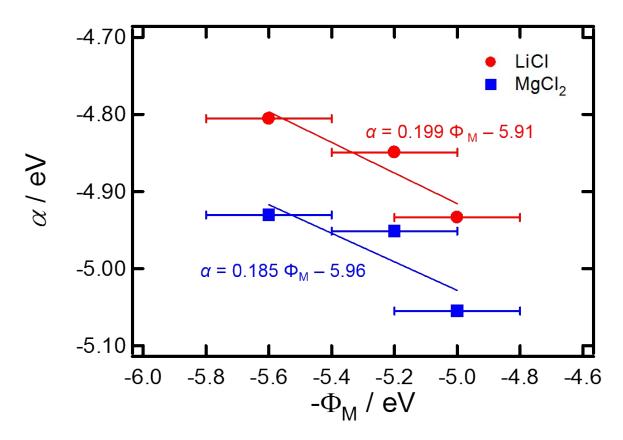
$$q = sgn(\psi) \sqrt{\epsilon_0 \epsilon_s k_B T (z^+ - z^-) c_0} \sqrt{2 \left(\frac{z^+ \exp\left(\frac{-z^- F \psi}{RT}\right) - z^- \exp\left(\frac{-z^+ F \psi}{RT}\right)}{z^+ - z^-} - 1 \right)},$$
 (S2)

where ϵ_0 and ϵ_s are the electrical permittivity of vacuum and the dielectric constant of the solution without the electrolyte, respectively, $k_{\rm B}$ is the Boltzmann constant, z^+ and z^- are the valences of the cation and anion, respectively, and c_0 is the bulk concentration of the salt.⁶⁵ The bulk concentrations of the cation and anion are expressed as $-z^-c_0$ and z^+c_0 , respectively. The dimensionless surface charge density in EDL is defined as

$$\sigma_{D} = -sgn(\psi) \sqrt{\frac{z^{+} - z^{-}}{2z^{+}(-z^{-})}} \sqrt{2 \left(\frac{z^{+} \exp\left(\frac{-z^{-}F\psi}{RT}\right) - z^{-} \exp\left(\frac{-z^{+}F\psi}{RT}\right)}{z^{+} - z^{-}}\right)}, \tag{S3}$$

by dividing the left and right of eq. (S2) by $\sqrt{\epsilon_0\epsilon_sk_BTz^+(-z^-)c_0}$

Equation (S3) is approximated as


$$\sigma_{D} \sim \begin{cases} -\sqrt{\frac{1}{-z^{-}}} exp\left(\frac{-z^{-}F\psi}{2RT}\right) \psi \gg 0\\ \sqrt{\frac{1}{z^{+}}} exp\left(\frac{-z^{+}F\psi}{2RT}\right) & \psi \ll 0 \end{cases}$$
(S4)

Equation (S4) is rewritten as

$$\psi \sim \begin{cases} -\frac{2RT}{z^{-}F} ln(-\sqrt{-z^{-}}\sigma_{D}) & \sigma_{D} \ll 0 \\ -\frac{2RT}{z^{+}F} ln^{\text{(iii)}} (\sqrt{z^{+}}\sigma_{D}) & \sigma_{D} \gg 0 \\ & . \end{cases}$$
(S5)

Using the charge of the ionic species z ($z = z^+$ or z^-), eq. (7) is derived as

$$\psi \sim -\frac{2RT}{zF} ln^{[n]}(\sqrt{|z|}|\sigma_D|) \qquad (7)$$

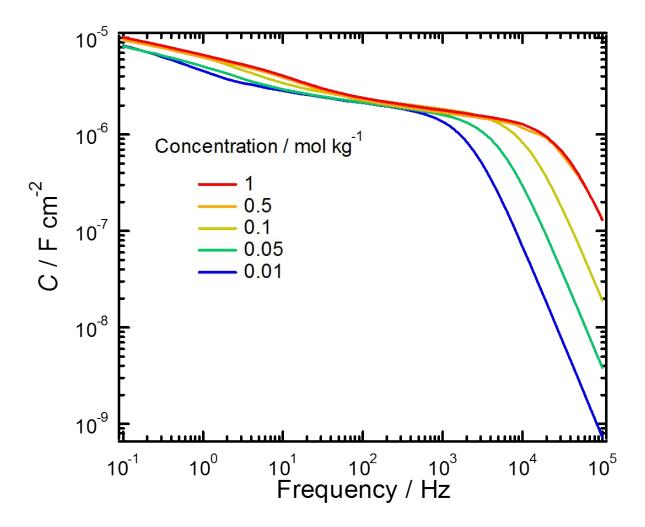
Figure S1 Work function dependence of the fitting parameter α in Table 1 for the PEG solutions of LiCl and MgCl₂.

Relation between In κ and Φ_{M}

As shown in Fig. S1, the values of α are approximately proportional to Φ_M , and, as shown in eq. (10), α is also proportional to $\ln \kappa$. Therefore, we can expect a linear relation between Φ_M and $\ln \kappa$, namely

$$ln \kappa \propto -\Phi_M$$
 (S6)

Since the proportionality coefficients between α and Φ_M for the LiCl and MgCl₂ solutions in Fig. S1, are nearly the same, the proportionality coefficients between Φ_M and ln κ would depend little on the electrolytes.



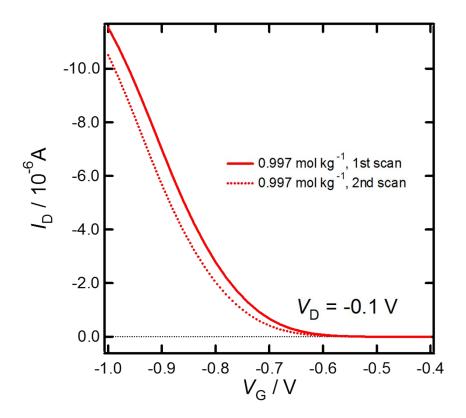

Figure S2 Frequency dependence of the capacitance for the LiCl-PEG solutions.

Table S1 Concentration dependence of the capacitance at 0.1 Hz for the LiCl-PEG solutions, and the FET parameters for the PtPc EDL-FETs of the LiCl-PEG solutions.

Concentration	Capacitance	Mobility	Threshold voltage	on/off ratio
/ mol kg ⁻¹	C / F cm ⁻²	μ / cm 2 V $^{-1}$ s $^{-1}$	V_{T} / V	on/off ratio
0.01	8.3×10^{-6}	1.2×10^{-3}	-0.8	1.4 × 10 ³
0.05	8.2 × 10 ⁻⁶	2.5 × 10 ⁻³	-0.74	2.8×10^{3}
0.1	9.6 × 10 ⁻⁶	2.0×10^{-3}	-0.66	3.0×10^{3}
0.5	9.5 × 10 ⁻⁶	2.7×10^{-3}	-0.65	5.2×10^{3}
1	1.0×10^{-5}	2.5×10^{-3}	-0.62	3.4×10^{3}

Calculations for mobilities, threshold voltages and on/off ratios

The transistor performances shown in Table S1 was calculated by the following procedure. The mobilities μ were calculated by the equation $\mu = (\partial I_D / \partial V_G) (L / wCV_D)$, where L, w, C were channel length (1.0×10⁻³ cm), channel width (20 cm), and capacitance of the gate-dielectrics. The values of $\partial I_D / \partial V_G$ were obtained from the slope of the linear region of the transfer characteristics. The threshold voltages V_T were obtained from the $|Id|^{1/2}$ vs. V_G plots. The on/off ratios were obtained from the ratio of the maximum and minimum values of I_D in the transfer characteristics.

Figure S3 Comparison between the 1st and 2nd scans for the transfer characteristics of the PtPc EDL-FET with the LiCl-PEG solutions of 0.997 mol kg⁻¹.

References

1 S. Trasatti, Pure & Appl Chem., 1986, **58**, 955.