Supporting Information

(1) The bulk structures of marcasite- and pyrite-type NiS_{2}

The marcasite-type bulk NiS_{2} [Fig. $\mathrm{S} 1(\mathrm{a})$] has an orthorhombic lattice in Pnnm symmetry with two Ni atoms and four S atoms, occupying the $2 c(0.0,0.5,0.0)$ and $4 g$ ($0.1832,0.1108,0.0$) Wyckoff positions, respectively. Each Ni atom is six-fold coordinated with six S atoms, while each S atom is four-fold coordinated with three Ni atoms and one S atom. The calculated lattice parameters $a=4.60 \AA, b=5.57 \AA, c=$ $3.55 \AA$, with the bond lengths of $\mathrm{d}_{\mathrm{Ni}-\mathrm{S}}=2.38 \AA$ and $\mathrm{d}_{\mathrm{S}-\mathrm{S}}=2.09 \AA$. We can obtain the $\mathrm{P}-$ NiS_{2} monolayer by cleaving along the (100) plane.

The pyrite-type bulk NiS_{2} [Fig. S1(b)] has a cubic lattice in $P a \overline{3}$ symmetry with four Ni atoms and eight S atoms, occupying the $4 b(0.5,0.5,0.5)$ and $8 c(0.1069$, $0.1069,0.1069)$ Wyckoff positions, respectively. Each Ni atom is six-fold coordinated with six S atoms, while each S atom is four-fold coordinated with three Ni atoms and one S atom. The calculated lattice parameters $a=b=c=5.62 \AA$, with the bond lengths of $\mathrm{d}_{\mathrm{Ni}-\mathrm{S}}=2.37 \AA$ and $\mathrm{d}_{\mathrm{S}-\mathrm{S}}=2.08 \AA$. The bulk NiS_{2} is generally considered to be pyritetype structure. ${ }^{[1-5]}$ We can obtain the $\mathrm{O}-\mathrm{NiS}_{2}$ monolayer by cleaving along the (001) plane.
(a) Marcasite-type

(b) Pyrite-type

Fig. S1: The bulk structures of (a) marcasite-type NiS_{2} and (b) pyrite-type NiS_{2}. The unit cell is marked by black lines. The blue and yellow balls represent the Ni and S atoms, respectively.
(2) The monolayer structures of $\mathrm{O}-, \mathrm{T}-$ and $\mathrm{H}-\mathrm{NiS}_{2}{ }^{[6-10]}$

The $\mathrm{O}-\mathrm{NiS}_{2}$ monolayer [Fig. S2(a)] has a monoclinic lattice in P_{21} / c symmetry with two Ni atoms and four S atoms, occupying the $2 b(0.0,0.0,0.5)$ and $4 e(0.1166$,
$0.3762,0.4713)$ Wyckoff positions, respectively. Each Ni atom is four-fold coordinated with four S atoms, while each S atom is three-fold coordinated with two Ni atoms and one S atom, forming an intriguing pentagonal ring network known as the Cairo pentagonal tiling. The calculated lattice parameters $a=5.22 \AA, b=5.33 \AA$, the buckling height $h=0.57 \AA$, with the bond lengths of $\mathrm{d}_{\mathrm{Ni}-\mathrm{S}}=2.17,2.18 \AA$ and $\mathrm{d}_{\mathrm{S}-\mathrm{s}}=$ 2.13 Å.

The T-NiS 2_{2} monolayer [Fig. S2(b)] has a trigonal lattice in $P \overline{3} m 1$ symmetry with one Ni atom and two S atoms, occupying the $1 b(0.0,0.0,0.5)$ and $2 d(0.3333,0.6667$, 0.5583) Wyckoff positions, respectively. Each Ni atom is six-fold coordinated with six S atoms, while each S atom is three-fold coordinated with three Ni atoms. The calculated lattice parameters $a=b=3.35 \AA$, the buckling height $h=1.17 \AA$, with the bond lengths of $\mathrm{d}_{\mathrm{Ni}-\mathrm{S}}=2.26 \AA$ and $\mathrm{d}_{\mathrm{S}-\mathrm{S}}=3.03 \AA$.

The $\mathrm{H}-\mathrm{NiS}_{2}$ monolayer [Fig. S2(c)] has a hexagonal lattice in $P \overline{6} \mathrm{~m} 2$ symmetry with one Ni atom and two S atoms, occupying the $1 d(0.3333,0.6667,0.5000)$ and $2 g$ ($0.0000,0.0000,0.4474$) Wyckoff positions, respectively. Each Ni atom is six-fold coordinated with six S atoms, while each S atom is three-fold coordinated with three Ni atoms. The calculated lattice parameters $a=b=3.54 \AA$, the buckling height $h=$ $1.05 \AA$, with the bond lengths of $\mathrm{d}_{\mathrm{Ni}-\mathrm{S}}=2.30 \AA$ and $\mathrm{d}_{\mathrm{S}-\mathrm{S}}=2.10 \AA$.
(a) $\mathrm{O}-\mathrm{NiS}_{2}$

(b) $\quad \mathrm{T}-\mathrm{NiS}_{2}$
(c) $\mathrm{H}-\mathrm{NiS}_{2}$

- Ni

O S

Fig. S2: Top and side views of (a) $\mathrm{O}-\mathrm{NiS}_{2}$ monolayer in P_{21} / c symmetry, (b) T-NiS ${ }_{2}$ monolayer in $P \overline{3} m 1$ symmetry, and (c) $\mathrm{H}-\mathrm{NiS}_{2}$ monolayer in $P \overline{6} m 2$ symmetry. The unit cell is marked by black dashed lines. h is the buckling height. The blue and yellow
balls represent the Ni and S atoms, respectively.

Fig. S3: Energy per atom for (a) NiX_{2} and (b) $\mathrm{PdX}_{2}(\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ monolayers in PO -, T - and H -structures.
(3) Total energy per atom for NiX_{2} and $\mathrm{PdX}_{2}(\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ monolayers

Fig. S3(a) presents the total energy per atom for $\mathrm{P}-\mathrm{NiX}_{2}(\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ pentagonal network structures (red) in comparison with those for $\mathrm{O}-, \mathrm{T}-$ and $\mathrm{H}-\mathrm{NiX}_{2}$ monolayers. For NiS_{2}, the energetic stability sequence is estimated to be: $\mathrm{H}-\mathrm{NiS}_{2}<\mathrm{T}-\mathrm{NiS}_{2}<\mathrm{O}-$ $\mathrm{NiS}_{2}<\mathrm{P}-\mathrm{NiS}_{2}$; for NiSe_{2}, the energetic stability sequence is estimated to be: $\mathrm{H}-\mathrm{NiSe}_{2}$
$<\mathrm{O}-\mathrm{NiSe}_{2}<\mathrm{P}-\mathrm{NiSe}_{2}<\mathrm{T}-\mathrm{NiSe}_{2}$; and for NiTe_{2}, the energetic stability sequence is estimated to be: $\mathrm{O}-\mathrm{NiTe}_{2}<\mathrm{H}-\mathrm{NiTe}_{2}<\mathrm{P}-\mathrm{NiTe}_{2}<\mathrm{T}-\mathrm{NiTe}_{2}$.

Fig. $\mathrm{S} 3(\mathrm{~b})$ presents the total energy per atom for $\mathrm{P}-\mathrm{PdX}_{2}(\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ pentagonal network structures (red) in comparison with those for $\mathrm{O}-$, $\mathrm{T}-$ and $\mathrm{H}-\mathrm{PdX} \mathrm{X}_{2}$ monolayers. For PdS_{2}, the energetic stability sequence is estimated to be: $\mathrm{H}-\mathrm{PdS}_{2}<\mathrm{T}-\mathrm{PdS}_{2}<\mathrm{P}-$ $\mathrm{PdS}_{2}<\mathrm{O}-\mathrm{PdS}_{2}$; for PdSe_{2}, the energetic stability sequence is estimated to be: $\mathrm{H}-\mathrm{PdSe}_{2}$ $<\mathrm{P}-\mathrm{PdSe}_{2}<\mathrm{T}-\mathrm{PdSe}_{2}<\mathrm{O}-\mathrm{PdSe}_{2}$; and for PdTe_{2}, the energetic stability sequence is estimated to be: $\mathrm{H}-\mathrm{PdTe}_{2}<\mathrm{P}-\mathrm{PdTe}_{2}<\mathrm{O}-\mathrm{PdTe}_{2}<\mathrm{T}-\mathrm{PdTe}_{2}$.

It is found that, for pentagonal network structure, the $\mathrm{P}-\mathrm{NiX}_{2}$ is always more favourable in energy than the $\mathrm{O}-\mathrm{NiX}_{2}$, while the $\mathrm{O}-\mathrm{PdX}_{2}$ is always more favourable in energy than the $\mathrm{P}-\mathrm{PdX}_{2}$ is. If we consider all four possible structures, the T -structure becomes more stable in $\mathrm{NiSe}_{2}, \mathrm{NiTe}_{2}$, and PdTe_{2} monolayers. Experimentally, mutilayer O-PdSe $2,{ }^{[11]}$ T-NiSe $e_{2},{ }^{[12]}$ T-NiTe $e_{2},{ }^{[13]}$ and T-PdTe $2{ }^{[14]}$ have been successfully synthesized, which are in good agreement with our calculated results shown in Fig. S3.

References

[1] J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi and S. Guo, Adv. Mater., 2017, 29, 1704681.
[2] N. Jiang, Q. Tang, M. Sheng, B. You, D.-E. Jiang and Y. Sun, Catal. Sci. Technol., 2016, 6, 1077-1084.
[3] T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi, S. Peng and D. Gao, J. Mater. Chem. A, 2019, 7, 4971-4976.
[4] R. L. Kautz, M. S. Dresselhaus, D. Adler and A. Linz, Phys. Rev. B, 1972, 6, 2078-2082.
[5] C. Schuster, M. Gatti and A. Rubio, Eur. Phys. J. B, 2012, 85, 325.
[6] W. Xiong, K. Huang and S. Yuan, J. Mater. Chem. C, 2019, 7, 13518-13525.
[7] H. Yang, Y. Li, Z. Yang, X. Shi, Z. Lin, R. Guo, L. Xu, H. Qu and S. Zhang, Vacuum, 2020, 174, 109176.
[8] C. Ataca, H. Sahin and S. Ciraci, J. Phys. Chem. C, 2012, 116, 8983-8999.
[9] P. Miró, M. Ghorbani-Asl and T. Heine, Angew. Chem. Int. Ed., 2014, 53, 3015-3018.
[10] J. A. Reyes-Retana and F. Cervantes-Sodi, Sci. Rep., 2016, 6, 24093.
[11] A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan and K. Xiao, J. Am. Chem. Soc., 2017, 139, 14090-14097.
[12] Y. Shao, S. Song, X. Wu, J. Qi, H. Lu, C. Liu, S. Zhu, Z. Liu, J. Wang, D. Shi, S. Du, Y. Wang and H.-J. Gao, Appl. Phys. Lett., 2017, 111, 113107.
[13] B. Zhao, W. Dang, Y. Liu, B. Li, J. Li, J. Luo, Z. Zhang, R. Wu, H. Ma, G. Sun, Y. Huang, X. D. Duan and X. F. Duan, J. Am. Chem. Soc., 2018, 140, 14217-14223.
[14] E. Li, R.-Z. Zhang, H. Li, C. Liu, G. Li, J.-O. Wang, T. Qian, H. Ding, Y.-Y. Zhang, S.-X. Du, X. Lin and H.-J. Gao, Chin. Phys. B, 2018, 27, 086804.

