Supporting Information: Computational Mechanistic Investigation of the Fe + CO₂ \rightarrow FeO + CO Reaction [†]

Eduardo D. Vicentini, Ana P. de Lima Batista, and Antonio G. Sampaio de

 $Olive ira-Filho^{\ast}$

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brazil

E-mail: antoniogsof@ffcrp.usp.br

Phone: $+55 \ 16 \ 3315 \ 9154$

[†]Last revision date: June 5, 2020

List of Tables

S1	Cartesian coordinates for CO	S-3
S2	Cartesian coordinates for CO_2	S-3
S3	Cartesian coordinates for FeO	S-3
S4	Cartesian coordinates for 12	S-4
S5	Cartesian coordinates for 2	S-4
S6	Cartesian coordinates for 23	S-4
S7	Cartesian coordinates for 3	S-4
$\mathbf{S8}$	Cartesian coordinates for 34	S-5
S9	Cartesian coordinates for 4	S-5
S10	Cartesian coordinates for 45	S-5
S11	Cartesian coordinates for 5	S-5
S12	Cartesian coordinates for 56	S-6
S13	Cartesian coordinates for 17	S-6
S14	Cartesian coordinates for 7	S-6
S15	Cartesian coordinates for 75	S-6
S16	Cartesian coordinates for 16	S-7
S17	Rate constants for the elementary reactions involved on the $\rm Fe+\rm CO_2$ reaction	
	in the 1000–3000 K temperature range	S-8
S18	Fitting parameters and root-mean square residuals (RMRS) for the modi-	
	fied Arrhenius equation, $k_{\rm fit}(T) = AT^n e^{-B/T}$, for the elementary reactions	
	involved on the ${\rm Fe}+{\rm CO}_2$ reaction. 	S-10
S19	Global rate constants for the $\mathrm{Fe}+\mathrm{CO}_2$ reaction for temperatures between	
	1000 and 3000 K	S-11
S20	Unscaled harmonic vibrational frequencies of the molecular species involved	
	on the Fe + CO_2 reaction.	S-12

Table S1: Cartesian coordinates for CO

2			
CO Eopt	-113.36	2525624	
С	0.000000	0.000000	0.002554
Ο	0.000000	0.000000	1.127446

Table S2: Cartesian coordinates for CO_2

3			
co2	Eopt -1	88.669937	
С	0.000000	0.000000	0.000000
Ο	0.000000	0.00000	1.159724
0	0.00000	0.000000	-1.159724

Table S3: Cartesian coordinates for FeO

2			
${\rm FeO}$	Eopt -1338 .	95079640	
Fe	0.000000	0.000000	-0.00003
0	0.000000	0.000000	1.607903

Table S4: Cartesian coordinates for 12

4			
TS12	Eopt -1	452.35825483	
Ο	1.010187	-0.000401	-0.828551
\mathbf{C}	-0.075422	-0.000037	-1.329520
Ο	-0.953515	0.000258	-2.088556
Fe	-0.000004	-0.000074	1.120963

Table S5: Cartesian coordinates for 2

4			
2	Eopt -1452	.36103272	
0	1.047844	0.00028	-0.734835
С	-0.149457	0.00003	-1.074320
0	-0.935743	-0.000023	-1.951245
F€	e 0.000119	0.00015	1.000514

Table S6: Cartesian coordinates for 23

4			
TS23	Eopt -1	452.32312222	
Ο	1.184810	0.00025	-0.360631
\mathbf{C}	-0.551393	-0.000027	-0.954381
Ο	-0.770911	0.000079	-2.081379
Fe	0.000228	-0.000217	0.904801

Table S7: Cartesian coordinates for 3

4			
3	Eopt -1452 .	35227223	
0	1.313574	-0.000065	1.487807
С	-0.646843	0.000077	-1.292090
Ο	-0.827014	-0.000144	-2.410217
Fε	-0.000900	0.000279	0.542397

Table S8: Cartesian coordinates for 34

4			
TS34	Eopt -1	452.31964786	
Ο	1.164893	-0.004181	1.521390
\mathbf{C}	-0.148967	-0.407562	-1.673877
Ο	-1.054230	0.303432	-1.667863
Fe	0.000786	0.006379	0.402159

Table S9: Cartesian coordinates for 4

4			
4	Eopt -1452 .	31972066	
Ο	1.221301	0.000307	1.450780
С	-0.236952	-0.467063	-1.683342
Ο	-1.043177	0.350760	-1.555630
Fe	-0.000211	-0.000387	0.392101

Table S10: Cartesian coordinates for 45

4			
TS45	Eopt -1	452.31629208	
Ο	0.475700	0.013674	1.965354
С	0.178543	0.382121	-2.258433
Ο	-0.600604	-0.279934	-1.759030
Fe	-0.010762	-0.021133	0.428198

Table S11: Cartesian coordinates for 5

4			
5	Eopt -1452 .	32284074	
Ο	0.054401	-0.000256	2.093920
С	-0.054968	0.000338	-2.803456
Ο	-0.029427	0.000209	-1.670107
F€	e 0.018493	-0.000057	0.481868

Table S12: Cartesian coordinates for 56

4			
TS56	Eopt -14	452.3195653903	389
Ο	0.062066	-0.000178	2.353130
\mathbf{C}	-0.055670	0.000487	-2.988109
Ο	-0.037125	0.000134	-1.858897
Fe	0.022575	-0.000230	0.741918

Table S13: Cartesian coordinates for 17

4			
TS17	Eopt -1	452.33201193	
Ο	1.131483	-0.000265	-1.066575
\mathbf{C}	-0.001085	-0.000102	-1.496429
Ο	-1.132556	0.000139	-1.063691
Fe	0.001983	0.00094	0.932056

Table S14: Cartesian coordinates for 7

4			
7	Eopt -1452	.33596351	
Ο	1.309713	-0.052375	-0.309774
\mathbf{C}	0.461265	-0.905226	0.037996
Ο	-0.740244	-0.653153	0.285125
F€	-0.247735	1.313654	-0.163547

Table S15: Cartesian coordinates for 75

4			
TS75	Eopt -1	452.29853760	
Ο	1.140197	-0.000571	-1.119423
\mathbf{C}	0.117965	-0.000431	-1.709677
Ο	-1.228736	0.000350	-0.383991
Fe	0.00007	0.000381	0.798312

Table S16: Cartesian coordinates for 16

4			
TS16	Eopt -14	152.29527504	
0	-0.499982	-0.065459	0.440933
С	0.478267	0.066922	1.027030
Ο	0.388556	0.053206	2.757736
Fe	-0.366841	-0.054669	4.270352

T (K)	k_1^{b}	$k_2^{ m b}$	k_3^{a}	$k_4^{ m a}$	k_5^{a}	$k_6{}^{\mathrm{a}}$	$k_7^{ m b}$
1000	5.25×10^{-16}	1.94×10^{-12}	$1.63 imes 10^9$	1.44×10^{8}	$1.68 imes 10^{14}$	$1.56 imes 10^{15}$	6.56×10^{-14}
1100	$1.94 imes 10^{-15}$	$2.91 imes 10^{-12}$	$3.83 imes10^9$	4.30×10^8	$1.35 imes 10^{14}$	$2.97 imes 10^{15}$	1.36×10^{-13}
1200	5.75×10^{-15}	4.09×10^{-12}	$7.84 imes 10^9$	$1.08 imes10^9$	$1.13 imes 10^{14}$	$5.08 imes 10^{15}$	2.49×10^{-13}
1300	1.45×10^{-14}	$5.47 imes 10^{-12}$	$1.44 imes 10^{10}$	$2.35 imes 10^9$	$9.77 imes 10^{13}$	$8.01 imes 10^{15}$	4.18×10^{-13}
1400	3.19×10^{-14}	$7.02 imes 10^{-12}$	$2.43 imes 10^{10}$	$4.59 imes 10^9$	$8.63 imes 10^{13}$	$1.19 imes 10^{16}$	$6.52 imes 10^{-13}$
1500	6.34×10^{-14}	8.74×10^{-12}	$3.82 imes 10^{10}$	$8.22 imes 10^9$	$7.77 imes 10^{13}$	$1.69 imes 10^{16}$	$9.60 imes10^{-13}$
1600	$1.16 imes10^{-13}$	$1.06 imes 10^{-11}$	$5.69 imes10^{10}$	$1.37 imes 10^{10}$	$7.10 imes10^{13}$	$2.22 imes 10^{16}$	1.35×10^{-12}
1700	1.96×10^{-13}	1.26×10^{-11}	$8.09 imes 10^{10}$	$2.16 imes10^{10}$	$6.57 imes 10^{13}$	$2.81 imes 10^{16}$	1.82×10^{-12}
1800	$3.15 imes 10^{-13}$	1.46×10^{-11}	$1.11 imes 10^{11}$	3.24×10^{10}	6.14×10^{13}	3.49×10^{16}	2.38×10^{-12}
1900	4.79×10^{-13}	$1.68 imes 10^{-11}$	$1.47 imes 10^{11}$	4.66×10^{10}	$5.78 imes 10^{13}$	4.26×10^{16}	3.04×10^{-12}
2000	$7.00 imes10^{-13}$	$1.90 imes10^{-11}$	$1.89 imes 10^{11}$	6.47×10^{10}	5.49×10^{13}	$5.12 imes 10^{16}$	$3.77 imes 10^{-12}$
2100	$9.87 imes 10^{-13}$	$2.13 imes 10^{-11}$	$2.38 imes 10^{11}$	$8.71 imes 10^{10}$	$5.24 imes 10^{13}$	$6.07 imes 10^{16}$	4.60×10^{-12}
2200	$1.35 imes 10^{-12}$	$2.37 imes 10^{-11}$	$2.94 imes 10^{11}$	1.14×10^{11}	$5.03 imes10^{13}$	$7.11 imes 10^{16}$	5.51×10^{-12}
2300	$1.79 imes 10^{-12}$	$2.60 imes10^{-11}$	$3.56 imes 10^{11}$	1.47×10^{11}	4.85×10^{13}	$8.26 imes 10^{16}$	$6.50 imes 10^{-12}$
2400	2.32×10^{-12}	2.84×10^{-11}	4.24×10^{11}	$1.85 imes 10^{11}$	4.70×10^{13}	$9.50 imes 10^{16}$	7.56×10^{-12}
2500	2.95×10^{-12}	$3.08 imes 10^{-11}$	4.99×10^{11}	$2.28 imes 10^{11}$	4.56×10^{13}	$1.08 imes 10^{17}$	$8.70 imes 10^{-12}$
2600	$3.68 imes 10^{-12}$	$3.32 imes 10^{-11}$	$5.80 imes10^{11}$	$2.77 imes 10^{11}$	4.45×10^{13}	$1.23 imes 10^{17}$	$9.90 imes 10^{-12}$
2700	4.51×10^{-12}	$3.56 imes 10^{-11}$	$6.67 imes 10^{11}$	$3.33 imes 10^{11}$	4.34×10^{13}	$1.38 imes 10^{17}$	$1.12 imes10^{-11}$
2800	5.46×10^{-12}	$3.80 imes10^{-11}$	$7.59 imes 10^{11}$	3.94×10^{11}	4.25×10^{13}	$1.55 imes 10^{17}$	$1.25 imes 10^{-11}$
2900	$6.51 imes 10^{-12}$	$4.04 imes 10^{-11}$	$8.57 imes 10^{11}$	4.62×10^{11}	4.17×10^{13}	$1.72 imes 10^{17}$	1.39×10^{-11}
3000	$7.67 imes 10^{-12}$	4.28×10^{-11}	$9.60 imes 10^{11}$	$5.36 imes 10^{11}$	4.10×10^{13}	$1.90 imes 10^{17}$	$1.53 imes 10^{-11}$
- - -							

Table S17: Rate constants for the elementary reactions involved on the $Fe + CO_2$ reaction in the 1000–3000 K temperature raı

S-8

 $^{{}^{}a} {}^{s^{-1}} {}^{b} {}^{cm^{3}} {}^{molecule^{-1}} {}^{s^{-1}}$

$k_{-8}{}^{\mathrm{a}}$	1.73×10^{14}	4.91×10^{14}	$1.19 imes 10^{15}$	$2.54 imes 10^{15}$	4.94×10^{15}	$8.87 imes 10^{15}$	1.49×10^{16}	$2.39 imes 10^{16}$	$3.64 imes 10^{16}$	$5.35 imes10^{16}$	$7.60 imes10^{16}$	$1.05 imes 10^{17}$	$1.41 imes 10^{17}$	$1.86 imes 10^{17}$	$2.41 imes 10^{17}$	$3.06 imes10^{17}$	$3.83 imes 10^{17}$	4.74×10^{17}	$5.78 imes 10^{17}$	$6.97 imes 10^{17}$	8.32×10^{17}		
$k_{-7}{}^{\mathrm{a}}$	3.91×10^{12}	4.56×10^{12}	$5.20 imes 10^{12}$	$5.82 imes 10^{12}$	6.41×10^{12}	6.99×10^{12}	$7.55 imes 10^{12}$	$8.09 imes 10^{12}$	$8.61 imes 10^{12}$	$9.11 imes 10^{12}$	$9.60 imes 10^{12}$	$1.01 imes 10^{13}$	$1.05 imes 10^{13}$	$1.10 imes 10^{13}$	1.14×10^{13}	$1.18 imes 10^{13}$	$1.22 imes 10^{13}$	$1.26 imes 10^{13}$	$1.30 imes 10^{13}$	1.33×10^{13}	1.37×10^{13}		
$k_{-5}{}^{\mathrm{a}}$	$3.96 imes 10^{17}$	$6.14 imes 10^{17}$	8.98×10^{17}	$1.25 imes 10^{18}$	$1.69 imes 10^{18}$	$2.21 imes 10^{18}$	$2.81 imes 10^{18}$	$3.51 imes 10^{18}$	4.30×10^{18}	$5.18 imes 10^{18}$	$6.17 imes 10^{18}$	$7.26 imes 10^{18}$	8.45×10^{18}	9.74×10^{18}	$1.11 imes 10^{19}$	$1.27 imes 10^{19}$	1.43×10^{19}	$1.60 imes 10^{19}$	1.78×10^{19}	$1.98 imes 10^{19}$	2.18×10^{19}		
$k_{-4}{}^{\mathrm{a}}$	4.97×10^{12}	5.24×10^{12}	$5.50 imes 10^{12}$	5.74×10^{12}	5.97×10^{12}	$6.20 imes 10^{12}$	6.41×10^{12}	$6.62 imes 10^{12}$	6.83×10^{12}	$7.02 imes 10^{12}$	7.21×10^{12}	7.40×10^{12}	$7.58 imes 10^{12}$	7.76×10^{12}	7.93×10^{12}	$8.10 imes 10^{12}$	8.27×10^{12}	8.43×10^{12}	$8.59 imes 10^{12}$	8.74×10^{12}	8.90×10^{12}		
$k_{-3}{}^{\mathrm{a}}$	$6.53 imes10^9$	$1.27 imes 10^{10}$	$2.23 imes10^{10}$	$3.59 imes 10^{10}$	$5.42 imes 10^{10}$	$7.77 imes10^{10}$	$1.07 imes10^{11}$	$1.41 imes 10^{11}$	$1.82 imes 10^{11}$	$2.28 imes 10^{11}$	$2.80 imes10^{11}$	$3.37 imes 10^{11}$	4.00×10^{11}	4.68×10^{11}	$5.41 imes 10^{11}$	$6.19 imes10^{11}$	$7.01 imes 10^{11}$	$7.87 imes 10^{11}$	$8.77 imes10^{11}$	$9.71 imes 10^{11}$	$1.07 imes 10^{12}$		
k_{-2}^{a}	$9.70 imes 10^8$	$2.37 imes 10^9$	$5.01 imes 10^9$	$9.46 imes 10^9$	$1.63 imes 10^{10}$	$2.63 imes 10^{10}$	$3.98 imes 10^{10}$	$5.76 imes 10^{10}$	$8.01 imes 10^{10}$	$1.08 imes 10^{11}$	1.41×10^{11}	$1.79 imes 10^{11}$	$2.23 imes 10^{11}$	2.74×10^{11}	$3.30 imes 10^{11}$	$3.92 imes 10^{11}$	4.60×10^{11}	$5.33 imes 10^{11}$	$6.12 imes 10^{11}$	$6.96 imes 10^{11}$	7.86×10^{11}		
$k_8{}^{\mathrm{a}}$	6.31×10^{10}	$1.10 imes10^{11}$	$1.76 imes 10^{11}$	$2.61 imes 10^{11}$	$3.68 imes 10^{11}$	4.95×10^{11}	6.42×10^{11}	$8.08 imes 10^{11}$	9.93×10^{11}	$1.19 imes 10^{12}$	1.41×10^{12}	1.64×10^{12}	$1.89 imes 10^{12}$	2.14×10^{12}	2.40×10^{12}	2.68×10^{12}	2.96×10^{12}	3.24×10^{12}	$3.53 imes 10^{12}$	$3.83 imes 10^{12}$	4.13×10^{12}		olecule ⁻¹ s ⁻¹
T (K)	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000	a _S -1	$^{\rm b}~{\rm cm}^3~{ m mc}$

Rate constant	A	$B(\mathbf{K})$	n	RMSR
k_1	1.018460×10^{-9} b	$1.440961 imes 10^4$	$-1.036047 imes 10^{-2}$	$1.970685 imes 10^{-3}$
k_{-2}	1.140089×10^{12} a	$9.472284 imes 10^3$	$3.478232 imes 10^{-1}$	$1.263559 imes 10^{-3}$
k_2	$1.721995 \times 10^{-11\mathrm{b}}$	$4.169444 imes 10^3$	2.873889×10^{-1}	$1.174592 imes 10^{-3}$
k_{-3}	1.930910×10^{11} a	$6.827475 imes 10^3$	$4.979307 imes 10^{-1}$	$1.159706 imes 10^{-3}$
k_3	$3.331095 imes 10^{12}$ a	$9.196665 imes 10^{3}$	2.275497×10^{-1}	$1.079980 imes 10^{-3}$
k_{-4}	$1.764592 imes 10^{11}$ a	$6.178540 imes 10^{1}$	$4.922439 imes 10^{-1}$	$3.925445 imes 10^{-4}$
k_4	$6.609193 imes10^{11}$ a	$1.158314 imes 10^4$	4.561314×10^{-1}	$1.348313 imes 10^{-3}$
k_{-5}	$6.204955 imes 10^{12}$ a	$2.725220 imes 10^3$	1.996166	$1.653085 imes 10^{-3}$
k_5	$4.022807 imes 10^{11}$ a	-2.870626×10^{3}	4.579550×10^{-1}	$6.523817 imes 10^{-4}$
k_6	3.110506×10^{16} a	$6.295689 imes 10^{3}$	$4.833389 imes 10^{-1}$	2.607927×10^{-2}
k_{-7}	$1.702237 imes 10^{12}$ a	$1.357358 imes 10^3$	$3.169325 imes 10^{-1}$	$1.376503 imes 10^{-3}$
k_7	1.813413×10^{-11} b	$7.689179 imes 10^3$	$2.992003 imes 10^{-1}$	$1.245185 imes 10^{-3}$
k_{-8}	$8.981567 imes 10^{11}$ a	$9.253766 imes 10^3$	2.101322	$1.241104 imes 10^{-3}$
k_8	5.144236×10^{12} a	$5.912667 imes 10^3$	$2.187396 imes 10^{-1}$	1.356674×10^{-3}

Table S18: Fitting parameters and root-mean square residuals (RMRS) for the modified Arrhenius equation, $k_{\rm fit}(T) = AT^n e^{-B/T}$, for the elementary reactions involved on the Fe + CO₂ reaction.

^a $\mathbf{K}^n \mathbf{s}^{-1}$ ^b $\mathbf{K}^n \mathbf{cm}^3$ molecule⁻¹ \mathbf{s}^{-1}

Temperature	Rate Constant ^a
1000	5.89×10^{-16}
1100	2.47×10^{-15}
1200	6.31×10^{-15}
1300	1.64×10^{-14}
1400	4.40×10^{-14}
1500	7.25×10^{-14}
1600	1.25×10^{-13}
1700	2.98×10^{-13}
1800	5.43×10^{-13}
1900	7.22×10^{-13}
2000	9.72×10^{-13}
2100	1.39×10^{-12}
2200	1.70×10^{-12}
2300	2.15×10^{-12}
2400	2.98×10^{-12}
2500	3.43×10^{-12}
2600	4.29×10^{-12}
2700	5.15×10^{-12}
2800	6.14×10^{-12}
2900	7.47×10^{-12}
3000	8.74×10^{-12}

Table S19: Global rate constants for the $\rm Fe+CO_2$ reaction for temperatures between 1000 and 3000 K.

^a cm³ molecule⁻¹ s⁻¹

Table S20: Unscaled harmonic vibrational frequencies of the molecular species involved on the $\rm Fe+CO_2$ reaction.

System	Vibrational	Frequencie	$s (cm^{-1})$			
CO_2	677.24	677.24	1372.25	2411.12		
CO	2214.52					
FeO	910.26					
2	208.71	285.97	497.10	621.36	1151.12	1995.93
3	83.76	318.10	327.12	376.06	933.10	2141.03
4	75.23	123.44	150.73	269.68	919.17	1937.05
5	67.44	135.24	168.12	176.62	934.60	2114.58
7	243.79	264.87	372.04	75.40	1238.80	1521.93
12	207.57i	145.80	440.65	536.02	1238.70	2239.19
16	650.25i	64.25	125.15	361.46	643.11	1997.45
17	361.14i	122.56	405.11	477.78	1196.39	1864.69
23	377.43i	287.85	307.35	454.10	820.87	2040.29
34	120.16i	80.71	126.66	256.59	917.75	1966.47
45	132.65i	54.00	86.18	167.18	932.24	2080.64
75	347.44i	203.53	207.13	501.85	787.41	1771.13
56	52.11i	52.82	110.97	116.34	920.65	2171.78