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1 SUPPLEMENTARY MATERIAL

1.1 Content

In addition to this PDF, we provide the raw data for all plots
shown in this work in the form of a spreadsheet in open-document
format (PBE-DATA.ods).

1.2 Theory and implementation

Let us begin with a review of the theoretical framework of the
D4 approach1 as this will provide the context for the introduc-
tion of the new features. The underlying concept of D4 and its
predecessors is to model the dispersion energy based on atomic
pairwise dispersion coefficients C jk

6 , which are obtained from a
Casimir–Polder integration of the respective atomic polarizabili-
ties αeff(iω)

C jk
6 =

3
π

∞∫
0

dω α
eff
j (iω)αeff

k (iω). (1)

Note that atomic units are used throughout in this work. To ac-
count for the influence of the chemical environment, the atomic
polarizabilities used in the D4 model are not fixed at the values
of the isolated atoms α(iω), but depend (i) on geometric parame-
ters captured by the atomic coordination number (CN j, as in D3),
as well as (ii) on effective atomic charges (z j, new in D4) ob-
tained via an electronegativity-equilibration (EEQ) scheme. The
idea behind the introduction of this charge scaling is to allow for
a more “natural” behavior of the effective polarizabilities, i.e., to
render atoms with negative partial charge more polarizable and
vice versa.

In practice, the geometry and charge dependence of the polar-
izabilities is implemented using an interpolation based on a set
of molecular reference systems. To do this efficiently and avoid
an interpolation in two dimensions, the atomic polarizabilities of
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all reference systems are, in a first step, rescaled to match the
effective charge of the atom under consideration of z j via

α
ref
i (iω) = α

ref
i (iω)ζ (z j,zref

i ), (2)

where ζ describes an empirical relation between the polarizability
of an atom and its effective charge. Its analytical form

ζ (z i,zref
i ) = exp

(
β

{
1− exp

[
γi

(
1−

zref
i
z i

)]})
, (3)

with β as a global parameter set to 3 and γi as the chemical hard-
ness taken from Ref. 2 is discussed in more detail in Ref. 1. The
calculation of the necessary effective charges z done with an EEQ
model is described in section. 1.3

In a second step, the effective polarizability of the atom j is ob-
tained via interpolation from the charge-scaled reference polar-
izabilities using a Gaussian weighting based on the coordination
number (CN)

α
eff
j (iω) =

N i,ref

∑
i,ref=1

α
ref
i (iω)W i,ref

j (CN i,ref
i ,CN j). (4)

However, to use this CN-based approach in periodic systems, a
different formula for the CN is used compared to the molecular
implementation to avoid CN-divergences. The expression for the
CN in periodic systems reads

CN i =

∑
T

∑
′

j

δ EN
i j

2

(
1+ erf

(
−k0

(
|R i j +T|−Rcov

i j

Rcov
i j

)))

δ
EN
i j = k1 exp

[
−
(
|EN i−EN j|+ k2

)2/k3

]
,

(5)

where, T = t1a1 + t2a2 + t3a3 denotes the translation vector with
a1, a2, and a3 being the lattice vectors (t1, t2, and t3 ∈ Z). The
primed sum over j indicates that the case i = j is omitted for
T = 0. Within the definition of the CN, we apply Pauling elec-
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tronegativities (EN),3 as well as the inter-nuclear distance R i j of
the pair i j, and the covalent atomic radii4 (Rcov

i j = Rcov
i +Rcov

j ).
Note that the CN has become EN-dependent to differentiate be-
tween covalent and ionic bonding (e.g., differentiate F2 from HF).
The parameters in equation 5 (k0 = 7.5, k1 = 4.1, k2 = 19.09, and
k3 = 254.56) were taken from Ref. 1.

This charge and geometry dependent calculation of atomic po-
larizabilities from molecular reference systems, which may be de-
scribed as an atom-in-molecule approach to polarizabilities, pre-
sumes the additivity of atomic polarizabilities,5 which is reflected
in the following equation

α
ref
i (iω) =

1
m

[
α

ImXn(iω)− n
l

α
Xl (iω)ζ (zX ,z

ref
X )
]
. (6)

Here, α ImXn(iω) is the molecular polarizability of one I-reference,
αXl (iω) refers to the homonuclear compound (e.g., αH2(iω) as di-
hydrogen) and m, n, and l are the particular stochiometric coeffi-
cients. All I atoms inside the reference molecules and the X atoms
in the homonuclear compounds are electronically equal and thus
symmetry equivalent. By exploiting this symmetry equivalence,
the approximation of additive polarizabilities is justified. Further-
more, the charge scaling of all X atoms in the respective reference
system is directly incorporated. This more general scheme has no
disadvantages compared to the hydrogenated reference systems
used in the D3 model. With it, any diatomic molecular polariz-
abilities, e.g., dihalide molecular polarizabilities (chlorine or flu-
orine) and oxygen molecular polarizabilities can be used in the
subtraction scheme of equation 6 as briefly discussed in Ref. 6.
This generalization of the approach opens up the possibility to
provide specialized C6 dispersion coefficients, which is exploited
here to properly describe interactions in ionic solids.

1.3 Periodic electronegativity equilibration model

For the generation of atomic partial charges q under periodic
boundary conditions, a classical geometry dependent EEQ charge
model is developed in the present work. For this purpose, a
cyclic cluster model (CCM) is implemented which applies peri-
odic boundary conditions to a cluster that uses a non-primitive
unit cell of a solid, a surface, or an infinite chain by directly em-
ploying cyclic Born-van-Kármán boundary conditions. The envi-
ronment of each atom is replaced by a notional cyclic arrange-
ment of cluster atoms, where the interaction zone of each atom
within the cyclic cluster is described by a Wigner-Seitz cell, con-
structed by the translation vectors of the unit cell and centered at
the atom. The cluster is constructed as a supercell of the primitive
unit cell, so that a repetition of this unit cell of N1, N2, and N3 cells
along the lattice vectors a1, a2, and a3 leads to a total cell number
of N = N1 ·N2 ·N3. In the CCM, the WSCs are stoichiometrically
and symmetrically constructed to ensure local electroneutrality.
This is guaranteed by the fact that each WSC central atom i is
surrounded by Ξ i neighbours j with an inverted partial charge.
When setting up the cluster, the number of all neighbours of each
WSC central atom is determined and weighting factors w i j = 1/Ξ i

for the respective neighbours are assigned, accordingly. Since
the CCM is a finite-size method, the clusters used can also carry

a net charge without running into convergence problems occur-
ring within the employed Ewald sums. In contrast to a supercell
model, no summation over special k-points has to be carried out.
Instead, a discrete number of k-points is contained implicitly by
placing them equally distributed in space.

{k}=
3

∏
j

g j

N j
b j with g j = 0, . . . ,N−1

j (7)

Here, we introduce the reciprocal lattice vectors b. The periodic
charge density ρ(r) of the system is supposed to be a superposi-
tion of spherically symmetric Gaussian functions centered at the
atoms position, each normalized to the corresponding nuclear
charge qi given by the following expression

ρ i(r) = ∑
T

q i

a3
i π

3/2
exp

(
−|r−R i−T|2

a2
i

)
. (8)

Here, the atomic van der Waals radii a i are introduced. By choos-
ing such atomic charge densities the total isotropic electrostatic
(IES) energy is amenable by the following expression given in
matrix notation

E IES = qT
(

1
2

A ·q−X
)
. (9)

The interaction matrix A contains all periodic Coulomb inter-
actions, which are developed in Ewald sums by splitting the
Coulomb operator into short-range and long-range contributions
(Ewald splitting parameter ξ =

√
π/V 1/3). Here, the previously

determined weighting factors wi j (as obtained from the CCM) are
applied for all off-diagonal elements

Arec
i j =

4π

V ∑
k6=0

cos
(
k · (R i j +T)

)
exp
{
− k2

4ξ 2

}
w i j

k2

Arec
ii =

4π

V ∑
k6=0

exp
{
− k2

4ξ 2

}
1
k2

Adir
i j = ∑

T

(
erf(γ i j

∣∣R i j +T
∣∣)∣∣R i j +T

∣∣ −
erf(ξ

∣∣R i j +T
∣∣)∣∣R i j +T

∣∣
)

w i j

Adir
ii = ∑

T 6=0

erf(γii|T|)
|T|

− erf(ξ |T|)
|T|

Aself/back
ii = Jii +

2γ ii√
π
− π

ξ 2V
.

(10)

Furthermore, we define γ i j to be equal to
(

a2
i +a2

j

)−1/2
. The

Lagrangian is constructed under the constraint that the sum of
the atomic charges conserves the total charge of the cluster, i.e.,

L = E IES +λ

(
∑
k

qk−qcluster

)

with
∂L
∂q

= 0 ∧ ∂L
∂λ

= ∑
i

q i−qcluster = 0,

(11)

which leads to a set of (N + 1) linear equations. The right-hand
side (RHS) of this set of equations is given by Xi =−χ i, where χ i
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consists of the fitted atomic electronegativity EN i which is shifted
according to the following expression

χ i = EN i−Ω i. (12)

The molecular EEQ model uses for this shift the square root of a
modified error function CN as described in Ref. 1. Since high co-
ordination numbers can be reached very quickly in a periodic sys-
tem, artificial polarity reversals can occur. An instructive example
is displayed in figure 1, where the polarity between cations and
anions within the sodium chloride crystal is reversed (i.e., sodium
formally becomes anionic and chlorine cationic). This is an arti-
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Fig. 1 Functional dependence on the sodium partial charge q(Na) with
increasing CN(Na) using the molecular EEQ model within the sodium
chloride crystal.

fact of the definition of the CN, which depends on the covalent
radius Rcov of the respective atom. As a result, the atom with the
larger covalent radius also gets a higher CN (here Rcov

Na = 3.5 Bohr
and Rcov

Cl = 2.5 Bohr) and thus a higher EN shift resulting in non-
physical polarity changes. In order to avoid such artifacts, the
procedure is modified for periodic boundary conditions. Here, Ω i

is used which includes the global parameter γ = 8 and is given as

Ω i = κ i

(
log
(

1+ exp(γ)
1+ exp(γ−CNi)

))1/2
. (13)

This classical charge model requires overall five empirical param-
eters (Jii, a i, EN i, κ i, and Rcov

i ) per element and achieves for
molecules across the entire periodic table of elements an average
deviation of about 0.04 e− (0.03 e− for organic molecules) with
respect to PBE0 based Hirshfeld charges.1

By using the definition of the Lagrangian given in equation 11
the analytical charge gradients is derived as

∂q
∂R j

= Ã−1
[
−∂ (A ·q)

∂R j
+

∂X
∂R j

]
(14)

where the inverse of the indefinite (N+1) matrix has been ob-

tained by a Bunch–Kaufman factorization7 and inversion.

1.4 Dispersion energy

The periodic DFT-D4 energy expression is constructed as follows

ED4
disp = E(6,8)

disp +E(9),ATM
disp . (15)

The left part of equation 15 corresponds to the pairwise disper-
sion energy which is given by

E (6,8)
disp =−1

2 ∑
i

∑
T

∑
′

j
∑

n=6,8
sn

C i j
(n)

R(n)
i jT

f (n)damp
(
R i jT

)
. (16)

Here, the primed sum over j indicates that the case i = j is omit-
ted for T = 0. In equation 16, sn scales the individual multi-
polar contributions—s6 and s8 for the dipole–dipole and dipole–
quadrupole term—and f (n)damp denotes the rational Becke–Johnson
(BJ) damping function (denoted as BJ-damping (BJD) in the fol-
lowing) which is used to couple this approach to standard DFAs.

f (n)BJD(Ri jT) =
R(n)

i jT

R(n)
i jT +

(
a1 Ri j

0 +a2

)(n) (17)

Equation 17 incorporates the DFA-specific parameters a1 and a2

and the cutoff-radii defined as

Ri j
0 =

√√√√C i j
8

C i j
6

, (18)

where the recursive relation between dipole–dipole and dipole–
quadrupole dispersion coefficients is used. Furthermore, we de-
fine the following expression for the rational damping term

R i j
0,BJ =

(
a1 Ri j

0 +a2

)
. (19)

The simplest way to include three-body effects uses the well-
known Axilrod–Teller–Muto8,9 (ATM) term (cf., right side of
equation 15) which is defined as the sum over i jk energy con-
tributions each defined by

E i jk =
C i jk

9
(
3cosθi cosθ j cosθk +1

)(
Ri jR jkRki

)3 . (20)

Here, θi, θ j, and θk are the internal angles of the triangle formed
by R i j, R jk, and Rki while C i jk

9 is the triple-dipole constant given
by

C i jk
9 ≈

√
C i j

6 C jk
6 C ki

6 . (21)

The C i jk
9 coefficients are derived from C6 coefficients which are

obtained from charge-neutral atomic polarizabilities (i.e., neutral
atoms with z i =Z i). The finally used three-body dispersion energy
expression is as follows

E(9),ATM
disp =

− k∑
i

∑
T

∑
j

∑
′

T′
∑
′′

k
f (9)damp(Ri jTkT′

)E i jTkT′ ,
(22)
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where the sum is over all atom triples i jk applied with a zero-
damping scheme proposed by Chai and Head-Gordon10

f (9)damp(Ri jTkT′
) =

1

1+6
(

Ri jTkT′

)−16 . (23)

To avoid multiple counting of three-body interactions the factor k
is set to 1

3 if atoms i, j, k are within the reference cell and to 1
2

in all other cases. As previously, the primed sum over j indicates
that the case i = j is omitted for T = 0, the double primed sum
over k indicates that the case j = k is omitted for T = T′ and i = k
is omitted for T = 0. Equation 23 includes the averaged inter-
atomic distance

Ri jTkT′
=

(
Ri jT R jTkT′

RkT′ i

/
R i j

0,BJ R jk
0,BJ Rki

0,BJ

)1/3
, (24)

which incorporates R i j/ jk/ki
0,BJ (cf. equation 19). Since dispersion in-

teractions are much faster decaying (leading order term ∝ R−6)
than, e.g., Coulomb interactions we employ for this energy con-
tribution a real-space cutoff within the periodic implementation.
Furthermore, analytical gradients are available for the dispersion
energy expression in equation 15.

1.5 Theory of the Quasi-harmonic approximation

In order to account for thermodynamic properties to crystals, the
knowledge of phonon modes is required over the complete first
Brillouin zone (FBZ) of the system. The easiest way to account
for ZPVE contributions includes harmonic lattice dynamics where
each k-point in the FBZ is associated with 3M harmonic oscilla-
tors (i. e. phonons) which are labeled by a phonon band index
n (n = 1, . . . ,3N) and whose energy levels are given by the usual
harmonic expression as

ε
n,k
m =

(
m+

1
2

)
ωkn, (25)

where m is an integer, ωkn = 2πνkn, and N is the number of
atoms per primitive cell. The overall vibrational canonical par-
tition function of a crystal at a given temperature T is given as

Qvib(T ) = ∏
k

3N

∏
n=1

∞

∑
m=0

exp

(
− ε

n,k
m

kBT

)
, (26)

where kB is Boltzmann’s constant. From this expression it is
straightforward to obtain harmonic expressions to the internal
energy given as

E (T ) = kBT 2
(

∂ log(Qvib)

∂T

)
= ∑

kn
h̄ωkn

1
2
+

1

exp
(

h̄ωkn
kBT

)
−1

 .

(27)
However, the harmonic approximation has its limitations like
zero thermal expansion, temperature independence of elastic
constants and bulk modulus, equality of constant-pressure and
constant-volume specific heats, as well as infinite thermal con-
ductivity and phonon lifetimes.11 To overcome such drawbacks,
the simplest way includes quasi-harmonic quantities in the sense
of the quasi-harmonic approximation (QHA).12–15 According to

the QHA the Helmholz free energy of a crystal is written retain-
ing the same harmonic expression but introducing an explicit de-
pendence of vibrational phonon frequencies on volume as given
by

FQHA(T,V ) =U0(V )+FQHA
vib (T,V ), (28)

where U0(V ) is the zero-temperature internal energy of the crys-
tal without any vibrational contribution (similar to volume con-
strained geometry optimizations) and the vibrational part is given
by

FQHA
vib (T,V ) = ∑

kn

h̄ωkn(V )

2
+ kBT

[
ln

(
1− exp

(
−

h̄ωkn(V )

kBT

))]
,

(29)
where the first part refers to the zero-point energy of the system.
The equilibrium volume at a given temperature T is obtained by
minimizing FQHA(T,V ) with respect to volume V while keeping T
constant.

1.6 Technical details

All molecular dynamic dipole polarizabilities α(iω) were cal-
culated using time-dependent density functional theory (TD-
DFT).16,17 A variant of the PBE0 hybrid functional was used,
with a Fock-exchange admixture of 37.5% (dubbed PBE38). This
method has already proved its accuracy and robustness in pre-
vious works.1,18,19 The atomic orbital (AO) basis sets used in
the TD-DFT calculations are of def2-QZVP20,21 quality closely
representing the complete basis set (CBS) limit for this prop-
erty. The following ECPs are used: ecp-2-sdf (unpublished,
Stuttgart group) covering 2 core electrons, ecp-10-sdf (unpub-
lished, Stuttgart group) covering 10 core electrons, ecp-18-sdf
(unpublished, Stuttgart group) covering 18 core electrons, ecp-
36-sdf (unpublished, Stuttgart group) covering 36 core electrons,
ecp-54-sdf (unpublished, Stuttgart group) covering 54 core elec-
trons, ECP-2822–24 covering 28 core electrons (for Rb, Sr, Y-Cd,
In-SB, Te-Xe, Ce-Lu), ECP-46 covering 46 core electrons (for Cs,
Ba, La), and ECP-60 covering 60 core electrons (for Hf-Hg, Tl-Bi,
Po-Rn) as defined in Ref. 20. Crystal structures have been ex-
tracted from MATERIALS PROJECT 25 (for alkali metals Li, Na, K,
Rb, and Cs; for alkaline earth metals Be, Mg, Ca, Sr, and Ba; for
d-block elements Sc and Y) and used within the PEECM to obtain
dynamic polarizabilities. Since some elements have experimental
crystal structures that exhibit high dipole moments, the PEECM
calculation could not be successfully converge (e.g, for Ti, Zr, Hf,
V, Nb, and Ta). For these elements closed-shell monomers with-
out dipole moments were extracted from the crystal structure and
dynamic polarizabilities were calculated using the presented level
of theory. Furthermore, periodic coordination numbers were as-
signed to those six extracted clusters to be used as approximated
“periodic” reference system. The ECPs used to create the shells
within part (II) of the particular clusters have been extracted from
the TURBOMOLE 26,27 basis set library (nomenclature reads as fol-
lows element/ecp-electrons in core-name; for alkali metals we
used: Li/ecp-2-sdf, Na/ecp-10-sdf, K/ecp-18-sdf, Rb/ecp-36-sdf,
and Cs/ecp-54-sdf; for earth alkali metals we used: Be/ecp-2-sdf,
Mg/ecp-10-sdf28, Ca/ecp-18-sdf, Sr/ecp-36-sdf, and Ba/ecp-54-
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sdf; for d-block elements we used: Sc/ecp-10-mdf29, Y/ecp-28-
mwb22; for halogen we applied Cl/ecp-10-sdf and F/ecp-2-sdf
and for oxygen we applied O/ecp-2-sdf).

1.7 Computational details
1.7.0.1 BJ-damping parameter For consistency we add the
BJ-damping parameter that are used in this work.

Table 1 Applied BJ-damping parameter of different DFAs as extracted
from Ref. 1.

DFA s6 s8 a1 a2

PW91 1.0000 0.77283111 0.39581542 4.93405761
SCAN 1.0000 1.46126056 0.62930855 6.31284039
PBE 1.0000 0.95948085 0.38574991 4.80688534
RPBE 1.0000 1.31183787 0.46169493 3.15711757
revPBE 1.0000 1.74676530 0.53634900 3.07261485
BLYP 1.0000 2.34076671 0.44488865 4.09330090
B3LYP 1.0000 2.02929367 0.40868035 4.53807137
TPSS 1.0000 1.76596355 0.42822303 4.54257102
PBE0 1.0000 1.20065498 0.40085597 5.02928789
revPBE 1.0000 1.74676530 0.53634900 3.07261485

1.7.0.2 X23: Solid state volumina For the determination
of the 23 molecular crystal structure volumes we applied the
VASP 6.0.8 software package. All PBE PAW calculations used
an 800eV plane-wave cutoff (convergence criteria: energy differ-
ence ∝ 10−6). The DFT conjugated gradient method has been
used within the optimization where all atomic positions and the
cell has been relaxed. For all calculations standard pseudopoten-
tials have been used.

1.7.0.3 ICE10: QHA calculations Quasi-harmonic approxi-
mation calculations have been performed for eight different ice
polymorphs. For this purpose the QHA implementation within
the CRYSTAL17 code has been applied in combination with HSE-
3c. Here, four different volumina have been used (steps of 2.5%)
for which overall ten different temperatures have been applied
(ranging from 10 K to 100 K applying 10 K steps). V0 has been
extracted from Helmholtz free energy calculations at a pressure
of 0 GPa.

1.7.0.4 Timings for the cyclohexanedione crystal A self-
consistent field (SCF) calculation has been performed for the clo-
hexanedione crystal using the PBE/800eV setup in VASP 6.0.8
(convergence criteria: energy difference ∝ 10−6). The converged
wave function has been applied to determine the pure timing aris-
ing from each dispersion correction. For SCAN-rVV10 and vdW-
DF2 we applied an PAW cutoff of 800eV. For all calculations stan-
dard pseudopotentials have been used.

1.7.0.5 Salt polarizabilities Salt polarizabilities have been
calculated for several alkali halides. For D3 and D4 we use po-
larizabilities from the DFTD3 and DFTD4 standalone programs.
For other dispersion corrections we have calculated polarizabil-
ities using VASP 6.0.8 with a PBE/800eV setup using standard
pseudopotentials.
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