Electronic Supplementary Information (ESI)

for

Understanding the Vapochromic Response of Mixed Copper(I)

Iodide/Silver(I) Iodide Nanoparticles toward Dimethyl Sulfide

Aaron D. Nicholas,^{1*} Francis H. Barnes,¹ Daniel R. Adams,¹ Matthew S. Webber,¹ Matthew A. Sturner,² Matthew D. Kessler,² David A. Welch,³ Robert D. Pike,^{2*} and Howard H. Patterson¹

¹Department of Chemistry, University of Maine, Orono, ME 04469 ²Department of Chemistry,

College of William and Mary, Williamsburg, VA 23187, ³Department of Physical Sciences,

Suffolk County Community College, Selden, NY 11784

Table of Contents

Figure S1.	PXRD overlay of nanoparticle samples 1-3 1	
Figure S2.	TEM micrograph images of nanoparticle samples 1-3	
Figure S3.	DRS spectra of solid samples of 1-3 at room temperature	
Figure S4.	TGA comparisons of 1'-3' before and after vacuum treatment	
Figure S5.	PXRD comparisons of 1' before and after vacuum treatment	
Figure S6.	PXRD comparisons of 2' before and after vacuum treatment	
Figure S7.	PXRD comparisons of 3' before and after vacuum treatment	
Figure S8.	Luminescence photographs of 1' after 0, 1, 2, 3, and 6 hours exposure	
Figure S9.	Solid state luminescence spectra of 1-3 and 1'-3'	
Figure S10.	Wireframe packing diagram of (CuI) ₄ DMS ₃ along the <i>a</i> -axis1	0
Figure S11.	Wireframe packing diagram of (CuI) ₄ DMS ₃ along the <i>c</i> -axis1	1
Figure S12.	Offset FTIR spectra of DMS exposed nanoparticles 1'-3' 1	2
Figure S13.	Offset FTIR spectra of DMS exposed nanoparticles 1'-3' after vacuum treatment 1	3
Figure S14.	Additional TEM images of 1-3	4
Table S1.	Tables of Molecular Dynamic model parameters 1	5

Figure S1. PXRD overlay of nanoparticle samples 1-3.

Figure S2. TEM micrograph images of nanoparticle samples 1-3.

Figure S3. DRS spectra of solid samples of 1-3 at room temperature.

Figure S4. TGA comparisons of 1'-3' before and after vacuum treatment (3 days, 100 μ m vacuum).

Figure S5. PXRD comparisons of 1' before and after vacuum treatment (3 days, 100 µm vacuum).

Figure S6. PXRD comparisons of 2' before and after vacuum treatment (3 days, 100 μ m vacuum).

Figure S7. PXRD comparisons of 3' before and after vacuum treatment (3 days, 100 µm vacuum).

Figure S9. Solid state luminescence spectra of 1-3 and 1'-3'. Note that 3 is non-emissive prior to exposure.

Figure S10. Wireframe packing diagram of (CuI)₄DMS₃ along the *a*-axis. Cu orange, I purple, S yellow, C gray, H white. Obtained from CSD 5.40 (Refcode: WEQLEK).¹

Figure S11. Wireframe packing diagram of (CuI)₄DMS₃ along the *c*-axis. Cu orange, I purple, S yellow, C gray, H white. Obtained from CSD 5.40 (Refcode: WEQLEK).¹

Figure S12. Offset FTIR spectra of DMS exposed nanoparticles 1'-3'.

Figure S13. Offset FTIR spectra of DMS exposed nanoparticles 1'-3' after vacuum treatment.

Figure S14. Additional TEM images of 1-3.

 Table S1: Tables of Molecular Dynamic model parameters.

Atomic Charges			
atom	charge		
Ag	0.6		
Cu	0.6		
I	-0.6		
С	0.22		
S	-0.44		

Lennard-Jones Parameters

atom 1	atom 2	ε (eV)	σ (Å)
Ag	S	0.05822	3.070
Ag	С	0.04215	3.141
Cu	S	0.05923	2.889
Cu	С	0.04288	2.956
I	S	0.009430	3.657
I	С	0.006830	3.736
S	S	0.01715	3.580
С	S	0.01241	3.663
С	С	0.008987	3.748

Vashishta-Rahman Parameters (form: Potential Energy = A/r^n)

atom 1	atom 2	A (eV)	n
Cu	I	186.811	7
Cu	I	-16.888	4
Ag	I	257.480	7
Ag	I	-16.888	4
I	I	5716.500	7
Ι	I	-33.776	4
	I	-99.767	6

Simple Harmonic Stretch/Bend Parameters

atom 1	atom 2	atom 3	k (eV/Ų or eV/rad²)	r _{equi} /θ _{equi} (Å or deg.)
С	S		19.7	1.82
S	С	С	5.38	99.0

References

 Knorr, M.; Bonnot, A.; Lapprand, A.; Khatyr, A.; Strohmann, C.; Kubicki, M. M.; Rousselin, Y.; Harvey, P. D. Reactivity of CuI and CuBr toward Dialkyl Sulfides RSR: From Discrete Molecular Cu₄I₄S₄ and Cu₈I₈S₆ Clusters to Luminescent Copper(I) Coordination Polymers. *Inorg. Chem.* 2015, 54 (8), 4076–4093. https://doi.org/10.1021/acs.inorgchem.5b00327.