SUPPLEMENTARY DATA

Strain	d(Å)	Θ ₁ (°)	Θ ₂ (°)	Θ ₃ (°)	Θ ₄ (°)
Relaxed	3.14	91.15	88.86	90.88	89.09
$\varepsilon = 6^{0}/_{0}$	3.08	91.54	88.57	89.08	93.96
	(-1.91%)	(-0.43%)	(-0.33%)	(-1.98%)	(5.47%)
ε _y = 8%	3.06	86.47	93.48	93.54	86.21
	(-2.54%)	(-4.68%)	(5.20%)	(2.93%)	(-3.23%)

TABLE S1. The layer thickness (d), angles $(\Theta_1, \Theta_2, \Theta_3, \Theta_4)$ of relaxed and strain structures.

Figure S1. Structural variation with respect to strain (a), (b), (c) Structures of α -Se at 0%, 6% (along x-direction), 8% (along y-direction) strain.

Figure S2. Charge density profile of α -Se (a) at 0%, (b) at 6% (along x-direction), (c) 6% (along y-direction) strain.

Figure S3. Effect of strain on band structures of α -Se. (a) Along X-direction (6% is the critical strain). (b) Along Y-direction (8% is the critical strain)..

Figure S4. (a) Graph and parabolic fit between $\frac{2(E - E_0)}{S_0}$ and $\frac{\Delta l}{l_0}$, $E - E_0$ is the difference in the total energy of stable and strained structure, S_0 is the surface area of monolayer slab of α -Se and $\frac{\Delta l}{l_0}$

 $\overline{l_0}$ is the strain in the corresponding direction. (b), (c) Graph and straight fit graph between

 $E - E_{vac}$ and $\frac{\Delta l}{l_0}$ along x and y direction, $E - E_{vac}$ is the difference in the energy of ith band and

vacuum energy, $\frac{\Delta l}{l_0}$ is the strain in the corresponding direction.