The total dose effect of γ -rays induced domain evolution on α -In₂Se₃ nanoflakes

Pengfei Hou ^{a,b,*,†}, Yun Chen ^{a,b,†}, Xinhao Wang ^{a,b,†}, Yang Lv ^{a,b}, Hongxia Guo ^{a,b}, Jinbin Wang ^a, Xiangli Zhong ^{a,*} and Xiaoping Ouyang ^a

^a Key Laboratory of Low-dimensional Materials and Application Technology, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

^b Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Guangzhou 510610, China

Figure S1. Raman spectra of the α -In₂Se₃ covered with Au electrode and the substrates with different total radiation doses.

Figure S3. Electrical transport in α-In₂Se₃ based transistor before and after irradiation.
(A) and (B) before the irradiation. (C) and (D) after the irradiation with a total dose of 200 krad(Si).

Figure S4. Electrical transport in α-In₂Se₃ based transistor before and after irradiation. (A) and (B) before the irradiation. (C) and (D) after the irradiation with a total dose of 500 krad(Si).

Figure S5. Electrical transport in α -In₂Se₃ based transistor before and after irradiation. (A) and (B) before the irradiation. (C) and (D) after the irradiation with a total dose of 1 Mrad(Si).

Figure R6. Photoresponsivity degradation ratio as a function of the total radiation dose.

Figure S7. Photoresponsivity as a function of the total radiation dose.