

ARTICLE

F-doping of nanostructured ZnO: A way to modify structural, electronic, and surface properties

Elisabeth Hannah Wolf,^a Marie-Mathilde Millet,^a Friedrich Seitz,^a Frenio A. Redeker,^b Wiebke Riedel,^b Gudrun Scholz,^c Walid Hetaba,^{a,d} Detre Teschner,^{a,d} Sabine Wrabetz,^a Frank Girgsdies,^a Alexander Klyushin,^a Thomas Risse,^b Sebastian Riedel,^b and Elias Frei*^a

Supporting Information

Table of content

- XPS data
- Electron microscopy evaluation
- MAS-NMR
- UV-vis spectroscopy
- EPR spectroscopy
- Microcalorimetry
- TDS Thermal-Desorption-Spectroscopy

X-Ray Photoelectron Spectroscopy

ARTICLE

SI 3: XPS Zn 3d and valence band spectra of ZnO, ZnO_F1 and ZnO_F10.

SI 4: XPS F1s spectra of ZnO, ZnO_F1 and ZnO_F10.

Phase	Reflection [hkl]	Distance [nm]
ZnO	2-1-1	0.137
ZnF ₂	210	0.210
ZnF ₂	200	0.235
ZnO	10-1/1-1-1	0.247
ZnO	002	0.259
ZnF ₂	101	0.261
ZnO	010/100	0.281

1. HRTEM

SI 5: Table of selected distances of reflections associated with ZnO and ZnF₂.

Nuclear Magnetic Resonance

SI 6: D1 time variation for ZnO_F10

SI 7: MAS frequency variation for ZnO_F1

ARTICLE

SI 8: Rotor-synchronised spin-echo MAS NMR spectrum of ZnO_F1, taken with a dipolar evolution time of 0.5 ms (ns = 256)

SI 9: D1 time variation ZnO_F1

SI 10: MAS frequency variation for ZnO_F10.

SI 11: Rotor-synchronised spin-echo MAS NMR spectrum of ZnF₂, taken with a dipolar evolution time of 0.5 ms (ns = 256).

SI 12: D1 time variation for ZnF_2

SI 13: MAS frequency variation of ZnF_2 .

UV-vis spectroscopy

SI 14: Tauc plot of ZnO, ZnO_F1 and ZnO_F10

SI 15: ESEEM and ENDOR (Mims / Davies) EPR measurements of ZnO_F1. Pulsed EPR measurements at Q-band frequencies were conducted on a Bruker ElexSys 580 setup with a home-built cavity (F. Lendtzian, TU Berlin. ENDOR (Electron Nuclear Double Resonance) spectra were measured at 10 K applying both Mims and Davies sequences ($\pi/2$ pulse length of 20 ns, delay time τ of 300 ns and rf-pulse length of 40 μ s) sequences as well as ESEEM (Electron Spin Echo Envelope Modulation) spectra were aquired using both 2-pulse and 3-pulse sequences ($\pi/2$ pulse length of 20 ns, delay time τ of 200 ns) to test for potential coupling of EPR active species to fluorine or other nuclei.

SI 16: NEXAFS F K-Edge spectrum of fluorinated and untreated ZnO. The presence of ZnF₂ in ZnO_F10 is visible (reference: T. Yamamoto, T. Mizoguchi, K. Tatsumi, I. Tanaka, H. Adachi, Y. Muramatsu, E. M. Gullikson and R. C. C. Perera, *Mater. Trans.*, 2004, **45**, 1991–1993.)

IR spectroscopy

SI 17: IR spectrum of ZnF_2 after NH_3 adsorption.

SI 18: Amount of CO2 adsorbed on the sample surfaces determined by microcalorimetry and the corresponding differential heats of adsorption

SI 19: TDS desorption signal m/z = 48.