# Supporting Information 

# Two-dimensional $\mathrm{C}_{3} \mathrm{~N}$ based sub-10 nanometer Biosensor 

S. Rani ${ }^{1}$, S. J. Ray ${ }^{1 *}$

${ }^{1}$ Department of Physics, Indian Institute of Technology Patna, Bihta 801106, India

[^0]Table S1: Abbreviations used for naming different configurations of the $\mathrm{C}_{3} \mathrm{~N}$ Nanoribbon

| Sr. <br> No. | Symbols | Nomenclature description of symbols |
| :---: | :---: | :---: |
| 1 | $\mathrm{Z}_{\mathrm{P}}$ | Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ |
| 2 | $\mathrm{Z}_{\text {PA }}$ | Adenine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ |
| 3 | $\mathrm{Z}_{\text {PC }}$ | cytosine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ |
| 4 | $\mathrm{Z}_{\text {PG }}$ | Guanine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ |
| 5 | $\mathrm{Z}_{\text {PT }}$ | Thymine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ |
| 6 | $\mathrm{Z}_{\text {PU }}$ | Uracil molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ |
| 7 | $\mathrm{Z}_{\mathrm{MB}}$ | Boron doping at middle of Zigzag $\mathrm{C}_{3} \mathrm{~N}$ monolayer |
| 8 | $\mathrm{Z}_{\text {MBA }}$ | Adenine molecule attached on the edge of middle Boron doped Zigzag C $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 9 | $\mathrm{Z}_{\mathrm{MBC}}$ | Cytosine molecule attached on the edge of middle Boron doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 10 | $\mathrm{Z}_{\text {MBG }}$ | Guanine molecule attached on the edge of middle Boron doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 11 | $\mathrm{Z}_{\text {MBT }}$ | Thymine molecule attached on the edge of middle Boron doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 12 | $\mathrm{Z}_{\mathrm{MBU}}$ | Uracil molecule attached on the edge of middle Boron doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 13 | $\mathrm{Z}_{\text {MSA }}$ | Adenine molecule attached on the edge of middle Sulphur doped Zigzag C ${ }_{3}$ N layer |
| 14 | $\mathrm{Z}_{\text {MSC }}$ | Cytosine molecule attached on the edge of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 15 | $\mathrm{Z}_{\text {MSG }}$ | Guanine molecule attached on the edge of middle Sulphur doped Zigzag C3N layer |
| 16 | $\mathrm{Z}_{\text {MST }}$ | Thymine molecule attached on the edge of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 17 | $\mathrm{Z}_{\text {MSU }}$ | Uracil molecule attached on the edge of middle Sulphur doped Zigzag C3N layer |
| 18 | Z ${ }_{\text {EBA }}$ | Adenine molecule attached on the side of middle Boron doped Zigzag C3N layer |
| 19 | $\mathrm{Z}_{\text {EBC }}$ | Cytosine molecule attached on the side of middle Boron doped Zigzag C3 ${ }^{\text {N }}$ layer |
| 20 | $\mathrm{Z}_{\text {EBG }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 21 | $\mathrm{Z}_{\text {EBT }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 22 | $\mathrm{Z}_{\text {EBU }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 23 | $\mathrm{Z}_{\text {ESA }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag C3N layer |
| 24 | $\mathrm{Z}_{\text {ESC }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3}$ N layer |
| 25 | $\mathrm{Z}_{\text {ESG }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 26 | $\mathrm{Z}_{\mathrm{EST}}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 27 | $\mathrm{Z}_{\text {ESU }}$ | Adenine molecule attached on the side of middle Sulphur doped Zigzag $\mathrm{C}_{3} \mathrm{~N}$ layer |
| 28 | $\mathrm{Z}_{\mathrm{DV}}$ | $\mathrm{C}_{3} \mathrm{~N}$ monolayer having double vacancy defect |
| 29 | $\mathrm{Z}_{\text {DVA }}$ | Adenine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having double vacancy defect |
| 30 | Z ${ }_{\text {DVC }}$ | Cytosine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having double vacancy defect |
| 31 | $\mathrm{Z}_{\text {DVG }}$ | Guanine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having double vacancy defect |
| 32 | $\mathrm{Z}_{\text {DVT }}$ | Thymine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having double vacancy defect |
| 33 | $\mathrm{Z}_{\mathrm{DVU}}$ | Uracil molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having double vacancy defect |
| 34 | $\mathrm{Z}_{\text {SV }}$ | $\mathrm{C}_{3} \mathrm{~N}$ monolayer having single vacancy defect |
| 36 | Z ${ }_{\text {sva }}$ | Adenine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having single vacancy defect |
| 37 | Z ${ }_{\text {SvC }}$ | Cytosine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having single vacancy defect |
| 38 | Z ${ }_{\text {SVG }}$ | Guanine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having single vacancy defect |
| 39 | $\mathrm{Z}_{\text {SVT }}$ | Thymine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having single vacancy defect |
| 40 | $\mathrm{Z}_{\text {SvU }}$ | Uracil molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having single vacancy defect |
| 41 | $\mathrm{Z}_{\text {SW }}$ | $\mathrm{C}_{3} \mathrm{~N}$ monolayer having stone wales defect |
| 42 | $\mathrm{Z}_{\text {SWA }}$ | Adenine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having stone wales defect |
| 43 | $\mathrm{Z}_{\text {SwC }}$ | Cytosine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having stone wales defect |
| 44 | $Z_{\text {SWG }}$ | Guanine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having stone wales defect |
| 45 | $\mathrm{Z}_{\text {SWT }}$ | Thymine molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having stone wales defect |
| 46 | $\mathrm{Z}_{\text {SWU }}$ | Uracil molecule attached on the edge of $\mathrm{C}_{3} \mathrm{~N}$ monolayer having stone wales defect |
| 47 | $\mathrm{Z}_{\mathrm{A} 1}$ | adenine molecule attached on the one side of Zigzag $\mathrm{C}_{3} \mathrm{~N}$ monolayer |
| 48 | $\mathrm{Z}_{\mathrm{A} 2}$ | First adenine attached on one side and Second adenine molecule attached on other side of Zigzag C3N monolayer |
| 49 | $\mathrm{Z}_{\mathrm{A} 3}$ | One adenine attached on one side and two adenine molecule attached on other side of Zigzag C3N monolayer |
| 50 | $\mathrm{Z}_{\text {A4 }}$ | Two-Two adenine attached on both side of Zigzag C3N monolayer |
| 51 | $\begin{aligned} & \mathrm{Z}_{\mathrm{p}}\left(\mathrm{~V}_{\mathrm{g}}=0\right. \\ & \mathrm{V}) \end{aligned}$ | Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ at zero gate voltage |
| 52 | $\begin{aligned} & \mathrm{Z}_{\mathrm{PA}}\left(\mathrm{~V}_{\mathrm{g}}=0\right. \\ & \mathrm{V}) \end{aligned}$ | Adenine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ at zero gate voltage |


| 53 | $Z_{\mathrm{P}}\left(\mathrm{V}_{\mathrm{g}}=10\right.$ <br> $\mathrm{V})$ | Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ at gate voltage of 10 V |
| :--- | :--- | :--- |
| 54 | $\mathrm{Z}_{\mathrm{PA}}$ <br> $10 \mathrm{~V})$ | Adenine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ at zero gate voltage of <br> 10 V |
| 55 | $\mathrm{Z}_{\mathrm{P}}\left(\mathrm{V}_{\mathrm{g}}=20\right.$ <br> $\mathrm{V})$ | Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ at zero gate voltage of 20 V <br> 56 <br> $\mathrm{Z}_{\mathrm{PA}}\left(V_{\mathrm{g}}=\right.$ <br> $20 \mathrm{~V})$Adenine molecule attached on the edge of Zigzag monolayer of $\mathrm{C}_{3} \mathrm{~N}$ at zero gate voltage of <br> 20 V |

## A. System of zigzag polyaniline nanoribbon

We calculated the transport properties of $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon and analysed the effect of DNA molecules attached to the edge of $\mathrm{C}_{3} \mathrm{~N}$.



Fig.S2 The transmission coefficient as function of energy of DNA/RNA attached on $Z_{p}$.
B. Effect of Doping

To see the effect of doping on transport properties of $\mathrm{C}_{3} \mathrm{~N}$, we took both $\mathrm{p} / \mathrm{n}$ (boron/sulphur) type of doping elements at middle/edge locations on $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon.


Fig. S3 (a)-(d) The schematic 2-probe geometry of boron and sulphur doping atoms at middle and edge locations on $\mathrm{C}_{3} \mathrm{~N}$.
$120 \times 10^{3}$

## C. Effect of concentration

To calculate the effect of concentration of DNA molecules on transport properties of $\mathrm{C}_{3} \mathrm{~N}$, we have attached adenine molecules sequentially on both sides of $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon.


Fig.S5 (a)-(d) shows the schematic geometry of $\mathrm{C}_{3} \mathrm{~N}$ with different concentration of adenine molecules are attached on both sides of nanoribbon.

## D. Effect of defect

Here, we studied DV, SV and SW defect in $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon as shown below.


Fig.S6: The schematic 2-probe geometry of $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon with (a) double vacancy, (b) single vacancy and (c) stone wales defect. (d) The variation in total energy of defective (SV, DV and SW) $\mathrm{C}_{3} \mathrm{~N}$ and DNA molecules attached with $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon.


Fig. S7 Variation in the sensitivity of doped nanoribbon in the presence of DNA/RNA nucleobases.


Fig. S8: Variation in the sensitivity of nanoribbon for (a) different concentration of adenine molecules (b) double vacancy (DV), (c) single vacancy (SV) and (d) stone wales (SW) defective nanoribbon in the presence of DNA/RNA nucleobases

## E. Adsorption Energy of the nucleobases

The adsorption/binding energy of a nucleobase can be defined as, $\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\text {layer }}-\mathrm{E}_{\text {molecule }}-\mathrm{E}_{\text {layer }+ \text { molecule }}$. The adsorption energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of the nucleobases vary between $1-1.35 \mathrm{eV}$ on the pristine system with, G highest and C with lowest binding strength. Independent of the dopant type, the location of the dopant atom has a larger impact on the $\mathrm{E}_{\mathrm{a}}$. Doping at the centre of nanoribbon with B or S atom resulted in an increase in $\mathrm{E}_{\mathrm{a}}$ with maximum change for $U$. On the other hand, edge doping leads to a significant reduction in $\mathrm{E}_{a}$ and the value of $E_{a}$ does not change between $S$ and $B$ doping. In the presence of a vacancy, $E_{a}$ is highest for single vacancy (SV) case and lowest for stoner-wales (SW) defect with the maximum $\mathrm{E}_{\mathrm{a}}$ for U in all three cases.


Fig. S9: Variations in binding energy of DNA/RNA nucleobase in different (a) doping and (b) defect configurations of $\mathrm{C}_{3} \mathrm{~N}$ nanoribbon.

## F. Effect of Gate Voltage on Transmission Spectrum

(a)


 2.0 $\ddagger$


Fig. S10: Transmission spectrum of (a) $Z_{p}$ and (b) $Z_{P A}$ at $V_{g}=10 \mathrm{~V}$ in the FET geometry.

## G. Effect of doping and defect on Transmission Spectrum



Fig. S11: The transmission spectrum of (left) $\mathrm{Z}_{\mathrm{MB}}$ and (right) $\mathrm{Z}_{\mathrm{EB}}$ at different applied voltages.


Fig. S12: The transmission spectrum of (left) $\mathrm{Z}_{\mathrm{Dv}}$ and (right) $\mathrm{Z}_{\mathrm{Sv}}$ at different applied voltages.


[^0]:    Email: ray@jiitp.ac.in, ray.sjr@gmail.com

