Supporting information

Achieving high thermal stability of different rare earth ions in a single matrix host via manipulated the local structure by solid solution

Xiuxia Yang^a, Lei Zhao^b, Zhichao Liu^a, Shuyu Tian^a, Hao Zhang^a, Xuhui Xu^a*, Jianbei Qiu^a, and Xue Yu^a*

^a College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093,

P. R. China

^b School of Physics and Opto-Electronic Technology, Baoji University of Arts and Sciences, Baoji 721016,

Shaanxi, P. R. China

Corresponding Author: Xue Yu E-mails: yuyu6593@126.com

Corresponding Author: Xuhui Xu E-mails: xuxuh07@126.com

Table S1 The crystallographic data of CAS.

Atom	Wyck	S.O.F	X	У	Z
		•			
Ca1	4e		0.3389(1)	0.1611(1)	0.51040
Al1	2a		0	0	0
Si1	4e	0.5	0.1434(1)	0.3566(1)	0.9540(2)
A12	4e	0.5	0.1434(1)	0.3566(1)	0.9540(2)
01	2c		1/2	0	0.1765(2)
02	4e		0.1427(1)	0.3573(1)	0.2835(1)
03	8f		0.0876(1)	0.1678(1)	0.8078(1)

Table S2 The crystallographic data of CYA.

Atom	Wyc k	S.O.F	X	У	Z
Cal	4e	0.5	0.3379(2)	0.16210	0.5098(9)
Y1	4e	0.5	0.3379(2)	0.16210	0.5098(9)
A11	2a		0	0	0
A12	4e		0.1441(5)	0.35590	0.9555(13)

01	2c	1/2	0	0.192(3)
O2	4e	0.1403(13)	0.35930	0.299(2)
O3	8f	0.0878(11)	0.1658(10)	0.794(2)

Table S3 Selected bond distances of CAS and CYA.

Ca ₂ Al ₂ SiO ₇		CaYAl ₃ O ₇	
Cal-O3	2.825Å	Ca1/Y1-O3	2.849Å
Cal-O3	2.825Å	Ca1/Y1-O3	2.849Å
Cal-O3	2.450Å	Ca1/Y1-O3	2.319Å
Cal-O3	2.450Å	Ca1/Y1-O3	2.319Å
Ca1-O2	2.422Å	Ca1/Y1-O2	2.413Å
Cal-O2	2.561Å	Ca1/Y1-O2	2.502Å
Ca1-O2	2.561Å	Ca1/Y1-O2	2.502Å
Cal-O1	2.434Å	Ca1/Y1-O1	2.382Å

Table S4 Crystallographic parameters gained form rietveld refinement results for CAS and CAS: Tb³⁺.

Formula	CAS	CAS: 0.01Tb ³⁺
Symmetry	tetragonal	tetragonal
Space group	P-421 m	P-421 m
a/Å	7.800058	7.677734
b/Å	7.800058	7.677734
c/Å	5.147901	5.065137
β/degree	90	90
Volume/Å ³	313.203	298.578
Rwp	13.59	14.35
Rp	10.08	12.06
χ^2	2.63	2.85

Figure. S1 XRD refinement results of CAS (a) and CAS: 0.01Tb³⁺ (b), respectively.

Figure. S2 Temperature-dependent PL spectra of $Ca_{2-x}Y_xAl_2Si_{1-x}Al_xO_7$: 0.01Tb³⁺ (x=0.2 (a), 0.4 (b), 0.6 (c), 0.8 (d)), respectively.

Figure. S3 Temperature-dependent decay curves of PL spectra of CAS: $0.01Tb^{3+}$ (a) and CYA: $0.01Tb^{3+}$ (b). The fluorescence decay curves are fitted by a double-exponential function:

$$I(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right)$$

where t is the time, I(t) is the corresponding luminescence intensity, A₁ and A₂ are constants, and τ_1 and τ_2 are the rapid and slow decay times for the exponential components, respectively. Based on the fitted parameters, the value of the average lifetime τ can be acquired utilizing the following expression:

Figure. S4 XRD patterns of CAS: $0.01Ln^{3+}$ (a), CYA: $0.01Ln^{3+}$ (Eu³⁺, Tb³⁺, Sm³⁺, Dy³⁺, and Pr³⁺) (b) and the standard patterns of CAS (JCPDS No. 74-1670) and CYA (JCPDS No. 77-1120), respectively.

Figure. S5 The temperature-dependent PL spectra of CAS: 0.01Ln³⁺ (Eu³⁺ (a), Sm³⁺ (b), Dy³⁺ (c)).

Figure. S6 The temperature-dependent PL spectra of CAS: 0.01Ln³⁺ (Eu³⁺ (a), Sm³⁺ (b), Dy³⁺ (c)).

Figure. S7 PL spectra of CYA: 0.01Eu³⁺ at different duration time and ambient temperature.

Figure. S8 PL spectra of CYA: 0.01Tb³⁺ at different duration time and ambient temperature.

Figure. S9 PL spectra of CYA: 0.01Sm³⁺ at different duration time and ambient temperature.

Figure. S10 PL spectra of CYA: 0.01Dy³⁺ at different duration time and ambient temperature.

Figure. S11 PL spectra of CYA: 0.01Pr³⁺ at different duration time and ambient temperature.

Figure. S12 Temperature-dependent emission intensity of ${}^{3}P_{0}$ and ${}^{1}D_{2}$ emission of CAS: 0.01Pr³⁺ (a) and CYA: 0.01Pr³⁺ (b) under the excitation of 450 nm.