
Spectral analysis

The extended log-normal function used to analyse the Raman spectra (eLN) is the sum of a log-normal
function accounting for the boson peak and an increasing exponential reproducing the continuum of
vibrational modes captured in a Raman experiment up to the cutoff frequency around 500 cm−1.
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A1 and A2 are the amplitudes, ω0 is the maximum of the log-normal function, γ is a width factor, and
α is the slope of the exponential. Eq. 1 is able to produce a large variety of spectral shapes above
the boson peak maximum, including fast decreases to zero (purely lognormal) or high level and flat
backgrounds (Fig. 1). In order to account for the fast decay around 500 cm−1 in almost all spectra,
we added a gaussian decay beyond a cutoff frequency ωc. Thus, the fit can be performed in the entire
frequency range between ∼ 20 cm−1 and ∼ 600 cm−1 (i.e. after the cutoff frequency) without defining
manually anchor points, or an upper frequency limit arbitrarily setting the background level. Moreover,
the parameters evolve very smoothly with composition within a glass family, and it was also possible
to reproduce the diversity of background shapes between different glass families. Fitting examples are

Figure 1: Examples of spectral shapes of the eLN function, from purely log-normal (thin lines, A2 = 0)
to highly extended-type (thick lines, A2 6= 0), with a gaussian cutoff decay at ωc (dashed lines).

given in Fig. 2a for BAS glasses. The cation modes ω1 and ω2 are reproduced by gaussian functions
and fitted simultaneously with Eq. 1. In that glass familly, a weak additional gaussian was added to ac-
count for a structured feature which indeed appears around 430 cm−1, slightly before the cutoff frequency.

Other fitting functions have been tested in order to confirm the validity of the results for ω1 and ω2, as
for example the asymmetric log-normal spectral form (aLN) [1]:
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A is the amplitude, ωBP is the boson peak frequency, γ is the width of the log-normal function, a is
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the asymmetry parameter, and I0 is an offset. In that case, we deliberately fixed the upper limit of the
fitting domain near ω2. This raises the background level to its highest value and provides a situation
significantly different to the previous one (Fig. 2b). This operator-defined frequency limit adds to the

Figure 2: a) BAS glasses fitted with the eLN function followed by a gaussian cutoff in BAS. b) BAS
glasses fitted with aLN function with an operator-defined upper frequency limit (430 cm−1). For sake
of clarity, the spectra have been translated verticaly as indicated by the horizontal lines on the right.
c) and d), Integrated intensity of ω1 and ω2, respectively, obtained in BAS glasses using the two fitting
procedures. In panel c) the values obtained by a fit with aLn have been devided by 1.8.

five fitting parameters of Eq. 2 and leads therefore to the same number of free parameters as for the first
method.
As a first result we find that the peak position of ω1 and ω2 is quite robust and does not depend on the
fitting procedure. The integrated intensities however, which correspond to the amplitude of the response
times its width, are likely to be more sensitive since they are background-level dependent. The latter
are shown in Figures 2c and 2d for modes ω1 and ω2 respectively, for the BAS glasses. Depending on
the fitting strategy, the values may be different (in particular for ω1) but the trends are very similar
supporting therefore the relevance of the spectral analysis: Iω1

becomes zero when z=[BaO] tends to
zero, while Iω2

exhibits a much faster decrease and reaches zero close to the peralkaline to peraluminate
join, R = 1. Fits using aLN might however indicate that a broad and weak contibution of ω2 remains in
the paraluminate domain ([BaO] ≤ 25). If confirmed, this could arise from ill-defined cation motions of
ω2-type close to (AlO4)− tetrahedra.
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