Supporting information for

Interaction of Amphiphilic Coumarin with DPPC/DPPS Lipid Bilayer: Effects of Concentration and Alkyl Tail Length

Poornima Kalyanram^a, Huilin Ma^b, Shena Marshall^a, Christina Goudreau^c, Ana Cartaya^c, Tyler Zimmermann^c, Istvan Stadler^d, Shikha Nangia^{b†}, Anju Gupta^{a†}

^a Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY

^b Department of Biomedical and Chemical Engineering, Syracuse, NY

^c Department of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY

^d Department of Laser Surgery, Rochester General Hospital, Rochester, NY

†Corresponding Authors

E-mail: anju.gupta@utoledo.edu. Phone: +1 419- 530- 8213

snangia@syr.edu. Phone: +1 315-443-0571

Figure S1: $^{\rm 13}\text{C-NMR}$ spectra of C9 amphiphile

Figure S2: ¹H-NMR spectra of C_9 amphiphile

Figure S3: ¹³C-NMR spectra of C₁₂ amphiphile

Figure S4: ¹H-NMR spectra of C_{12} amphiphile

Figure S5: HR-MS spectra of C₁₂ amphiphile

Figure S6: Fluorescence spectroscopy of amphiphilic fluorometric probes at 37°C & 43°C

Figure S7: DSC Thermogram of a) pure DPPC/DPPS(85/15mol%) b) effect of DMSO on DPPC/DPPS (85/15 mol%)

Figure S8: Flip-flop modes for 20 randomly selected molecules (each in a unique color) in system (a) C_5 -42, (b) C_5 -166, (c) C_5 -166, and (d) C_5 -209. Trajectory of the coumarin ring for each molecule is shown in a unique color.

Figure S8: Flip-flop modes for 20 randomly selected molecules (each in a unique color) in system (a) C_5 -42, (b) C_5 -166, (c) C_5 -166, and (d) C_5 -209. Trajectory of the coumarin ring for each molecule is shown in a unique color.

Figure S9: Flip-flop modes for 20 randomly selected molecules (each in a unique color) in system (a) C₁₂-42 and (b) C₁₂-166. Trajectory of the coumarin ring for each molecule is shown in a unique color.

Figure S10: Comparison of flip-flop (%) for C_5 (blue) and C_{12} (red) molecules over a range of concentrations. with (a) ≥ 1 flip-flop (b) ≥ 2 flip-flops

Bond	<i>r_{eq}</i> (nm)	k_{bond} (kJ mol ⁻¹ nm ⁻²)	Angle	$\theta_{\rm eq}({\rm deg})$	k_{angle} (kJ mol ⁻¹)		
1-2	0.295	Constrained	1-2-4	87	50		
1-3	0.288	Constrained	2-1-3	75	50		
2-4	0.303	Constrained	1-3-4	112	50		
3-4	0.206	Constrained	1-3-5	155	50		
3-5	0.330	5000	2-4-3	86	50		
4-5	0.393	5000	2-4-5	142	50		
5-6	0.347	5000	3-5-6	92	50		
			4-5-6	108	50		
Table S1: Equilibrium bond length (reg) angle (Aeg) and respective force constant for C, model							

Bond	<i>r_{eq}</i> (nm)	$k_{\text{bond}} \text{ (kJ mol}^{-1} \text{ nm}^{-2}\text{)}$	Angle	$\theta_{\rm eq}({\rm deg})$	k_{angle} (kJ mol ⁻¹)
1-2	0.295	Constrained	1-2-4	87	50
1-3	0.288	Constrained	2-1-3	75	50
2-4	0.303	20000	1-3-4	112	50
3-4	0.206	Constrained	1-3-5	171	50
3-5	0.348	5000	2-4-3	86	50
4-5	0.341	5000	2-4-5	158	50
5-6	0.339	5000	3-5-6	122	50
6-7	0.398	5000	4-5-6	144	50
7-8	0.413	5000	5-6-7	120	50
			6-7-8	143	50