Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Submitted to PCCP, 2/7/2020

Ru-Polyoxometalate as a Single-Atom Electrocatalyst for N₂ Reduction to NH₃ with High Selectivity under Applied Voltage: Perspective from DFT Studies

Linghui Lin¹, Liye Gao¹, Ke Xie¹, Rong Jiang^{2,*}, and Sen Lin^{1,*}

¹State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China ²Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China

^{*}Corresponding author. Email: slin@fzu.edu.cn and jiangrong@fzu.edu.cn

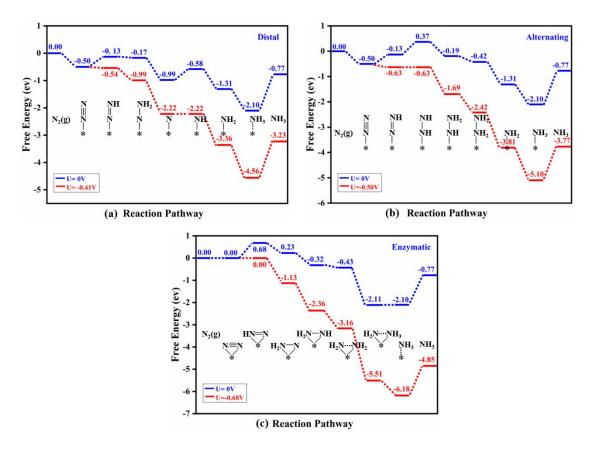


Figure S1. Free energy of N_2 reduction on Ru-PMA through (a) distal, (b) alternating, and (c) enzymatic mechanisms at zero and applied potentials.

Figure S2. Free energy of N_2 reduction on Ru-SiTA through (a) distal, (b) alternating, and (c) enzymatic mechanisms at zero and applied potentials.

Figure S3. Free energy of N_2 reduction on Ru-SiMA through (a) distal, (b) alternating, and (c) enzymatic mechanisms at zero and applied potentials.