Supplementary Information

Molecular-level insights into structures, dynamics, and hydrogen bonds of ethylammonium nitrate protic ionic liquid at the liquidvacuum interface

Qin Huang,^a Yiping Huang,^{ab} Yi Luo,^a Li Li,^a Guobing Zhou,^{*a} Xiangshu Chen,^{*a} and Zhen Yang^{*a}

^aInstitute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China

^bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China

*Corresponding author.

E-mail: gbzhou1989@gmail.com (G.B. Zhou)

E-mail: cxs66cn@jxnu.edu.cn (X.S. Chen)

E-mail: yangzhen@jxnu.edu.cn (Z. Yang)

1. The Lennard–Jones parameters and partial atomic charges

	atom	σ(Å)	ε (kcal/mol)	q (e)
	C (CH ₃)	3.500	0.066	-0.1440
	C (CH ₂)	3.500	0.066	0.1520
EA ⁺ Cation	H (C ₂ H ₅)	2.500	0.030	0.0480
	$N (NH_{3}^{+})$	3.250	0.170	-0.2400
	$H(NH_{3}^{+})$	0.000	0.000	0.2640
NO ₃ ⁻ Anion	Ν	3.150	0.170	0.6352
	0	2.860	0.210	-0.4784

Table S1. The Lennard-Jones parameters and partial atomic charges used in this work.

2. The typical equilibrium snapshot

Fig. S1. The typical equilibrium snapshot for the system of EAN IL at the liquidvacuum interface.

3. The effect of the sampling time interval Δt on the hydrogen bond dynamics

Here, it should be emphasized that the time interval Δt to update the trajectories has a great influence on the $S_{HB}(t)$ since its lifetime is relatively short. To better understand such effect, we have sampled the trajectories every 1, 5, 10, 50, and 100 fs to analyze the $S_{HB}(t)$ and $C_{HB}(t)$ for bulk ethylammonium nitrate (EAN) IL. Fig. S2 shows the calculated $S_{HB}(t)$ and $C_{HB}(t)$ curves with different Δt values, and the corresponding average lifetime τ_S^{HB} and structural relaxation time τ_C^{HB} of the NH₃⁺- NO₃⁻ HBs are listed in Table S2. It is clear from Fig. S2 that the $S_{HB}(t)$ curves of $\Delta t =$ 50 and 100 fs are very distinct from those of $\Delta t = 1$, 5, and 10 fs. Likewise, the results in Table 1 show that the obtained the HBs lifetime τ_S^{HB} is almost the same when Δt is 1 and 5 fs, whereas the corresponding of $\Delta t = 100$ fs is about 0.90 ps, which is about 3 times greater than that of the $\Delta t = 1$ fs. On the other hand, Fig. S1b demonstrates that the Δt has a negligible effect on the $C_{HB}(t)$ profiles, which is supported by the nearly identical structural relaxation time τ_C^{HB} in Table S1, suggesting that the $C_{HB}(t)$ is insensitive to the Δt Value. Therefore, we performed an additional 100 ps NVT simulation, with a smaller time interval (5 fs), to calculate the continuous HB dynamics $S_{HB}(t)$ and such Δt enables us to obtain accurate and reliable τ_S^{HB} , while the 20 ns NVT simulation, with a time interval of 100 fs, was used to determine the intermittent HB dynamics $C_{HB}(t)$.

Fig. S2. Two time correlation functions (a) $S_{HB}(t)$ and (b) $C_{HB}(t)$ for bulk NH₃⁺-NO₃⁻ HBs with different time interval Δt .

Δt (fs)	$ au_S^{HB}$ (ps)	$ au_{\mathcal{C}}^{HB}$ (ps)
1	0.31	3.50
5	0.32	3.50
10	0.36	3.48
50	0.61	3.46
100	0.90	3.47

Table S2. The corresponding τ_S^{HB} and τ_C^{HB} values for bulk EAN with different Δt .

4. Surface tension calculation

we calculated the surface tension γ by using the pressure tensor and the equation is defined as:¹⁻⁴

$$\gamma = \frac{L_z}{2} \left[\langle p_{zz} \rangle - \frac{\langle p_{xx} \rangle + \langle p_{yy} \rangle}{2} \right]$$

where p_{ii} is the ii component of the pressure tensor, L_z is the simulation dimension in z direction and the factor of 1/2 outside the bracket arises from the two liquid-vapor interfaces in the system. $\langle p_{zz} \rangle$ and $\langle p_{xx} \rangle + \langle p_{yy} \rangle$ refer to the pressure components normal and tangential to the interface plane, respectively.

5. Mean residence time calculation

We also calculated the residence time by employing the residence correlation function $C_{res}(t)$, defined as:⁵⁻⁷

$$C_{\rm res}(t) = \frac{\langle g(0)g(t) \rangle}{\langle g(0)g(0) \rangle}$$

where the variable g(t) is unity when the tagged ion in a given interface region remains continuously from time 0 to time t, and zero otherwise. The angular brackets represent ensemble average and $C_{res}(t)$ is expected to decay from 1.0 to 0.0 along the time evolution. By continuous definition, the $C_{res}(t)$ is a measure of the mean residence time τ_{res} of the ions in specific layers of interest. The τ_{res} values are calculated by fitting the $C_{res}(t)$ curves through the three weighed exponentials (with a total weight of one, i.e., A+B+C=1), which can be expressed as:

$$R(t) = A \exp(-t/\tau_a) + B \exp(-t/\tau_b) + C \exp(-t/\tau_c)$$

and then

$$\tau_{\rm res} = A\tau_{\rm a} + B\tau_{\rm b} + C\tau_{\rm c}$$

where A, B, and C are the fitting parameters, while τ_a , τ_b and τ_c are the time constants. The calculated $C_{res}(t)$ curves for Cation-1 and Cation-2 at the liquid-vacuum interface are shown in Fig. 1 and the mean residence time is listed in Table 1. The results in Fig. 1 reveal that the cations in the first interface layer (Cation-1) remain longer than those in the second interface layer (Cation-2) at all three temperatures, which is supported by the mean residence time in Table 1. Meanwhile, when the temperature increases from 300 to 400 K, the $C_{res}(t)$ curves of both Cation-1 and Cation-2 start to show a faster decay, resulting in the mean residence time of Cation-1 (or Cation-2) decreases from 218.8 ps (or 130.5 ps) to 88.2 ps (or 23.9 ps). By comparison, it is obvious that the mean residence time of both Cation-1 and Cation-2 is much lower than the sampling time of 20.0 ns.

Fig. S3. The residence correlation functions of Cation-1 and Cation-2 at (a) 300, (b) 350, and (c) 400 K.

Table S3. The mean residence time τ_{res} for the interfacial Cation-1 and Cation-2 at 300, 350, and 400 K.

$ au_{res}$ (ps)	300 K	350 K	400 K
Cation-1	218.8	153.4	88.2
Cation-2	130.5	37.0	23.9

Reference

S1. Fajardo, O. Y.; Lecce, S. D.; Bresme, F. Molecular Dynamics Simulation of Imidazolium CnMIM-BF₄ Ionic Liquids Using a Coarse Grained Force-Field. *Phys. Chem. Chem. Phys.* 2020, *22*, 1682–1692.

S2. Bhatt, D.; Newman, J.; Radke, C. J. Molecular Dynamics Simulations of Surface Tensions of Aqueous Electrolytic Solutions. *J. Phys. Chem. B* **2004**, *108*, 9077–9084.

S3. Gonzalez-Melchor, M.; Bresne, F.; Alejandre, J. Molecular Dynamics Simulations of the Surface Tension of Ionic Liquids. *J. Chem. Phys.* **2005**, *122*, 104710.

S4. Alejandre, J.; Tildesley, D. J.; Chapela, G. A. Molecular Dynamics Simulation of the Orthobaric Densities and Surface Tension of water. *J. Chem. Phys.* 1994, *102*, 4574.
S5. Reddy, T. D. N.; Mallik, B. S. Heterogeneity in the Microstructure and Dynamics of Tetraalkylammonium Hydroxide Ionic Liquids: Insight from Classical Molecular Dynamics Simulations and Voronoi Tessellation Analysis. *Phys. Chem. Chem. Phys.* 2020, *22*, 3466–3480.

S6. Reddy, T. D. N.; Mallik, B. S. Protic Ammonium Carboxylate Ionic Liquids: Insight into Structure, Dynamics and Thermophysical Properties by Alkyl Group Functionalization. *Phys. Chem. Chem. Phys.* **2017**, *19*, 10358–10370.

S7. Argyris, D.; Tummala, N. R.; Striolo, A.; Cole, D. R. Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces. *J. Phys. Chem. C* **2008**, *112*, 13587–13599.