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1. Shape of the self-propelled rotors as a function of 

In the present study, we considered  as the parameter that controls the shape of the self-propelled 

rotors, as shown in Figure 1a. Figure S1a shows the definition of the parameters, a, b, c, l1, l2, l3, 

and l4. For the investigated rotors, a, b, and c were fixed at 20.0, 23.5, and 10.0×√3 mm, 

respectively. Figure S1b shows l1, l2, l3, and l4 which depend on . Based on Figure S1b, we 

examined at  = 60-120 deg since l3 was negative at  ≤ 50 deg.  

 

 

Figure S1.  (a) Schematic illustration of the self-propelled rotor and definition of parameters of a, 

b, c, l1, l2, l3, and l4, and (b) l1, l2, l3, and l4 depending on .  a = 20.0 mm, b = 23.5 mm, c = 
√3

2
𝑎, 

and r = 1.5 mm. l1 = 
𝑟

sin
𝜃

2

, l2 = 
𝑎

2tan
𝜃

2

, l3 = l1l2+b+c, and l4 =  
𝑎

2sin
𝜃

2

. The dotted circle in (a) denotes 

the location of a camphor disk. 

 

2. Movie of the experimental result in Figure 2 

Movie S1 corresponds to the self-propelled motion in Figure 2 (4 × speed). 
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3. Inversion probability for  = 60, 70, 80, 90, 95, 100, and 120 deg as a function of td  

 Figure S2 shows the experimental results on the inversion probability (IP) for the self-

propelled rotors shown in Figure 1a, as a function of td at different  (= 60, 70, 80, 90, 95, 100, 

and 120 deg). 

 

 

Figure S2. Experimental results on the inversion probability (IP) as a function of td at different  

(filled triangles: 60 deg, empty triangles: 70 deg, filled squares: 80 deg, empty circles: 90 deg, 

filled circles: 95 deg, empty squares: 120 deg). Data correspond to those in Figure 3b. 

 

4. Rotation of the self-propelled rotor with three bars to decrease the velocity 

To control the angular velocity of the self-propelled rotors with the same shape, three bars 

(length: 1b) were glued below the three blades, as illustrated in Figure 1b. Figure S3 shows the 

angular velocity of the self-propelled rotor characterized at  = 70 deg as a function of lb. The 

angular velocity decreased with an increase in lb. 
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Figure S3. Experimental results on the stationary angular velocity depending on the length of the 

bars, lb, for the self-propelled rotor at  = 70 deg (see Figure 1b). 

 

5. Visualization of the distribution of camphor molecules developed from the rotor 

To visualize the camphor molecules developed from camphor disks at the blade corners to the 

water surface, the water surface was covered with CaCO3 powders (see Figure 6). The contact 

lengths corresponding to high concentration of camphor molecules (lhr and lhl) were measured for 

the individual corners at the halting state just before releasing, and averaged as shown in Figure 

6a. The difference between lhr and lhl (lh) increased with an increase in the angular velocity, as 

shown in Figure S4. 
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Figure S4. Experimental results on longer (filled circles) and shoter lh (empty circles) contact lines 

as functions of the angle, . The values of lhwere the averaged over values for three blades. 

 

To calculate the torque of the self-propelled rotor during rotation, lrr and lrl were measured 

during the rotation, as shown in Figure S5. Actually, lrr and lrl could not be measured at the 

stationary state since the distribution of camphor was perturbed by the rotation of the blades. 

Therefore, lrr and lrl in Figure S5 were measured before the rotor reached its stationary angular 

velocity, and they were used as the values corresponding to the stationary angular velocity in our 

calculations of the torque. The angular velocity used in Figure S5 was measured with CaCO3 

powders added to the water surface when the rotor reached the stationary angular velocity. 
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Figure S5. Longer and shorter lr measured during the rotation as functions of the stationary angular 

velocity of the rotor. The rotors illustrated in Figure 1a were used in this experiment. The numbers 

denote the angle, , in the unit of degree of the rotor. The plotted values of lrwere averaged over 

three blades. 

 

5. Calculation of torque of the self-propelled rotor as a function of  

We calculate the torque working on the self-propelled rotor, N(). Figure S6 shows the 

schematic illustration on the calculation of N().  
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Figure S6. Schematic illustration of the self-propelled rotor to calculate the torque, NIar(). PI, PII, 

and PIII are three blades. SIal, SIbl, SIar, and SIbr are the sides in PI. c and 0 are the surface tension 

of camphor and pure water (c < 0). The green and red parts of the contour denote the regions 

where the surface tension is 0 and c, respectively. 

 

Here, three blades in the rotor are distinguished by PI, PII, and PIII. Sna and Snb are two sides of 

Pn (n = I, II, or III) with the length of l4 and l3, respectively. Snr and Snl are the right and left sides 

of Pn (n = I, II, or III). We assume that the surface tension of pure water, 0, works at Snb (n = I, II, 

or III) and that the blades and distributions of surface camphor concentration around them are 

identical. As the force of Snbr is balanced at that of Snbl, we consider the force at Snar and Snal. NIar() 

is the torque working on the side SIar. NIar() at SIar is obtained as. 

     𝑁Iar(𝜃) = ∫ 𝛾c [(𝑏 + 𝑙1)cos
𝜃

2
− 𝑥] 𝑑𝑥 + ∫ 𝛾0 [(𝑏 + 𝑙1)cos

𝜃

2
− 𝑥] 𝑑𝑥

𝑙4

𝑙rr

𝑙rr

0
 

=     𝛾c [𝑙rr(𝑏 + 𝑙1)cos
𝜃

2
−

𝑙rr
2

2
] + 𝛾0 [(𝑙4 − 𝑙rr)(𝑏 + 𝑙1)cos

𝜃

2
− (

𝑙4
2−𝑙rr

2

2
)],        (S1) 

where x is the coordinate along SIar from the edge of PI (x = 0) and lr is the contact length from x = 

0. We assume that the surface tension at 0 ≤ x ≤ lr is c when camphor molecules are developed 

from SIar to the water surface and that the surface tension at x > lr is 0 during the release operation. 

On the other hand, NIal() at SIal is obtained as. 

𝑁Ial(𝜃) =  −𝛾c [𝑙rl(𝑏 + 𝑙1)cos
𝜃

2
−

𝑙rl
2

2
] − 𝛾0 [(𝑙4 − 𝑙rl)(𝑏 + 𝑙1)cos

𝜃

2
− (

𝑙4
2−𝑙rl

2

2
)].      (S2) 

Here, we assume that the surface tension is 0, i.e., there is no development of camphor molecules 

from SIal during the release operation. Finally, the torque of the rotor, N(), is described as follows, 

which corresponds to eq 1 in the main text. 
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N() = NIar + NIIar + NIIIar + NIal + NIIal + NIIIal = 3(NIar + NIal) 

= 3(𝛾c − 𝛾0) [
𝑙𝑟𝑙

2 −𝑙𝑟𝑟
2

2
− (𝑙𝑟𝑙 − 𝑙𝑟𝑟)𝑏cos𝜃 + 𝑟cot𝜃].                                                  (1) 

 

6. Estimation of the Marangoni number and the Peclet number in the present system 

We can estimate the Marangoni number and the Peclet number. Here, "solutal" Marangoni 

number is important and it is defined as (ǝ/ǝc)(cL/ηD)= L/ηD, where  is the difference by 

the camphor dissolution, L is the typical length of the blade, η is the viscosity of water, and D is 

the diffusion coefficient. When  ~ 0.01 N m-1, L ~  0.01 m, η ~ 10-3 Pa s, and D ~ 10-9 m2 s-1, 

Ma ~ 108, which means strong Marangoni flow occurs. As for the Peclet number, it is defined as 

Pe = L/D, where  is the typical velocity. Here,  ~ 0.01 m s-1, and thus Pe ~ 105. This means the 

advective transport is more important than the diffusive transport for this system. 


