Analytical magnetostatic model for 2D arrays of interacting magnetic nanowires and nanotubes

Y. G. Velázquez 1 and A. Encinas 1,*

¹División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, 78216 San Luis Potosí, SLP, Mexico *armando.encinas@ipicyt.edu.mx

Figure SI1. Reduced magnetic anisotropy energy E_K as a function of the reciprocal reduced center to center distance $1/d = \varphi/D$ for an array of NWs with aspect ratio (a) t = 2, (b) t = 5, (c) t = 7 and (d) t = 100, calculated using Eq. (11) [continuos line] and modifying the first term of Eq. (15) [dashed blue line].

Table 1. Coordinates (reduced center-to-center distance and aspect ratio) for the prediction of the easy axis orientation in magnetic NW arrays using Eq. (17) for those studies that report the EART in these systems.

Sample	d=D/φ	<i>т=h/ф</i>	Easy axis		Deference		
			Reference	Model	Kelerence		
NiFe	1.44	55.55	Para	Para			
	1.85	71.42	Para	Para	1		
	2.6	100	Perp	Perp			
CoFeB	1.35	5	Perp	Perp			
	1.35	49.5	Perp	Perp	2		
	1.35	149.5	Perp	Perp			
	2.6	600	Perp	Perp			
	1.23	70.58	Perp	Perp			
	1.56	89.55	Para	Perp			
	1.75	3.33	Para	Perp			
	1.75	8.33	Perp	Perp			
Ni	Continued on next ₃ page						

Sample	<i>d=D/φ</i>	<i>τ=h/φ</i>	Easy axis		Reference
			Reference	Model	Kelerenee
	1.75	13.33	Para	Para	
	1.75	23.33	Para	Para	
	1.75	100	Para	Para	
	1.75	400	Para	Para	
	2.72	9.09	Para	Para	
	3	171.42	Para	Para	
Ni	1.71	3.5	Perp	Perp	
	1.71	7	Perp	Perp	4
	1.71	14	Perp	Perp	
	1.71	28	Perp	Para	
Со	1.61	15.38	Perp	Perp	5
	3	28.57	Para	Para	-
Ni	1.5	20	Perp	Perp	6
	2.5	200	Para	Para	
NiFe	1.44	55.55	Perp	Perp	
	1.75	41.66	Perp	Para	
	1.85	71.42	Para	Para	7
	2.1	50	Para	Para	
	2.6	100	Para	Para	
	2.62	62.5	Para	Para	
Со	1.5	142.85	Perp	Perp	
	2.1	200	Perp	Para	
	2.62	5	Para	Para	8
	2.62	10	Para	Para	
	2.62	250	Para	Para	

Table 1 – continued from previous page

References

- Tartakovskaya, E. V., Pardavi-Horvath, M. & Vázquez, M. Configurational spin reorientation phase transition in magnetic nanowire arrays. *Journal of Magnetism and Magnetic Materials* 322, 743–747 (2010).
- 2. Ciureanu, M. *et al.* Magnetic properties of electrodeposited cofeb thin films and nanowire arrays. *Electrochimica Acta* 50, 4487 (2005). URLhttps://doi.org/10.1016/j.electacta.2005.02.011.
- 3. Kartopu, G. *et al.* Size effects and origin of easy-axis in nickel nanowire arrays. *Journal Applied Physics* 109, 033909 (2011). URLhttps://doi.org/10.1063/1.3531565.
- 4. Das, B. & Mandal, K. Effect of aspect ratio on the magnetic properties of nickel nanowires. *Journal of Applied Physics* 103, 031908 (2008). URLhttp://dx.doi.org/10.1063/1.2828026.
- 5. Vázquez, M. & Vivas, L. G. Magnetization reversal in co base nanowire arrays. *Physica Status Solidi B* 248, 2368 (2011). URL https://doi.org/10.1002/pssb.201147092.
- 6. Khalid, S., Sharif, R. & Shah, Z. H. Tailoring the magnetic easy axis of nickel nanowires by varying diameter. *Surface Review and Letters* 23, 1650024 (2016).
- 7. Pardavi-Horvath, M., Si, P.E., Vazquez, M., Rosa, W.O. & Badini, G. Interaction effects in permalloy nanowire systems. *Journal of Applied Physics* **103**, 07D517 (2008). URL https://doi.org/10.1063/1.2833304.
- 8. Kartopu, G., Yalçin, O., Es-Souni, M. & Basaran, A. C. Magnetization behavior of ordered and high density co nanowire arrays with varying aspect ratio. *Journal of Applied Physics* 103, 093915 (2008).