Electronic Supplementary Information

Polar soft-SAFT: Theory and Comparison with Molecular Simulations and Experimental Data of Pure Polar Fluids.

Ismail I.I. Alkhatib^{1,2}, Luís M.C. Pereira¹, Jordi Torne³ and Lourdes F. Vega^{1,2,4*}

¹ Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.

² Research and Innovation Center on CO₂ and H₂ (RICH), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.

³Alya Technology & Innovation SL, C/ Republica 42, 08202 Sabadell, Barcelona, Spain ⁴ Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.

* Corresponding author. *E-mail address*: lourdes.vega@ku.ac.ae

Fig. S1. Coexisting curves for the monomeric density vs. reduced temperature from soft-SAFT (solid lines) compared to molecular simulations¹ (symbols) for LJ fluids with different chain lengths, m = 1, m = 2, and m = 4.

Fig. S2. VLE coexistence curves for tangent-sphere LJ dimer fluid (m = 2) from soft-SAFT (solid lines) compared to molecular simulations for non-polar LJ dimer fluid¹ (\circ), and for non-polar 2CLJ fluid with $L^* = 1.0$ (\diamond),² (\Box),³ and (Δ).⁴

Fig. S3. Surface tension vs. temperature for non-polar LJ spheres, m = 1 (black) and LJ dimer, m = 2 (red) fluids from soft-SAFT + DGT model (solid lines) compared to results from molecular simulations for tangent-sphere LJs¹ (\circ), and 2CLJ fluids⁴ (Δ)(converted to the tangent-sphere model). See text for details.

References

- D. Duque, J. C. Pàmies and L. F. Vega, Interfacial properties of Lennard-Jones chains by direct simulation and density gradient theory, *J. Chem. Phys.*, 2004, **121**, 11395–11401.
- 2 J. Stoll, J. Vrabec and H. Hasse, Comprehensive study of the vapour-liquid equilibria of the pure two-centre Lennard-Jones plus pointdipole fluid, *Fluid Phase Equilib.*, 2003, **209**, 29–53.
- 3 C. Vega, C. McBride, E. De Miguel, F. J. Blas and A. Galindo, The phase diagram of the two center Lennard-Jones model as obtained from computer simulation and Wertheim's thermodynamic perturbation theory, *J. Chem. Phys.*, 2003, **118**, 10696–10706.
- 4 S. Werth, M. Horsch and H. Hasse, Surface tension of the two center Lennard-Jones plus point dipole fluid, *J. Chem. Phys.*, 2016, **144**, 054702, DOI:10.1063/1.4940966.