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ESR MEASUREMENTS

The ESR measurements were carried out using a home-
built W-band pulse ESR spectrometer equipped with
an Oxford Instruments superconducting magnet system
where the main field is set at 3.4 T, and a sweepable mag-
net covers a range of ±0.1 T. The variable temperature
insert (VTI) allows cooling of the ESR sample. The VTI
operates under continuous vacuum pumping and uses he-
lium from the magnet reservoir for cooling the sample.
The measurements were carried out at a temperature of
∼30 K. The design of the microwave (MW) bridge and
the sample probe are very similar to the one reported
by the Goldfarb group [1]. The pulses are generated us-
ing a DTG5078 data timing generator (Tektronix Inc.),
video signals from the MW bridge are acquired using a
TDS7154 oscilloscope (Tektronix Inc.), the magnetic field
is controlled using a ISS-10 shim power supply, where one
of the outputs is connected to the sweepable supercon-
ducting magnet. All these devices are controlled using a
home written LabView program.

The field-sweep ESR spectra for [BDPA]=1 mM and
[BDPA]=40 mM are shown in Fig.S1. The ESR line for
[BDPA] =1 mM has a FWHH ≈ 21 MHz, which is dom-
inated by the inhomogeneous broadening due to hyper-
fine couplings and g−anisotropy. For [BDPA] =40 mM
the width is larger, FWHH ≈ 27 MHz, and has an ad-
ditional contribution due to the dipolar couplings with
many nearby electrons. The maxima of the two spectra
shown in Fig.S1 do not coincide due to inaccuracy of field
setting by the magnetic field controller.

EVOLUTION OF POLARIZATION IN A SYSTEM
CONTAINING 1H AND 19F NUCLEI

The Solomon equations describe the cross-relaxation in
a system containing a pair of two spin-1/2 heteronuclei[2].

The magnetic moments of nuclei Îz and Ŝz can be found
using the following relationships:

dÎz
dt

= − (w0 + +2w1 + w2)
(
Îz − I0

)
−

− (w2 − w0)
(
Ŝz − S0

)
dŜz
dt

= − (w0 + 2w′1 + w2)
(
Îz − I0

)
− (w2 − w0)

(
Îz − I0

)
(1)

Here w1 and w′1 are the single quantum transition

probabilities per unit time for spins Î and Ŝ respectively,
w0 is the zero quantum transition probability, w2 is the
double-quantum transition probability per unit time, and
S0 and I0 are the equilibrium values of the magnetic mo-
ments. The right-hand side of each equation is a linear
combination of magnetic moments Îz and Ŝz with an ad-
ditional constant. In our system, there are many 1H and

19F, with NH – the number of 1H nuclei and NF – the
number of 19F nuclei, some of which cross-relax with one
another, while the rest form a very dense network, such
that polarization is quickly mixed among nuclei of same
kind.

Taking into account the linearity of Solomon Eqs. (1),
the solution for polarizations PH(t)and PF (t), for 1H
and 19F respectively, in such a sample should also be
described by a system of linear equations:

dPF (t)

dt
= a1PH (t) + a2PF (t) + a3

dPH (t)

dt
= b1PH (t) + b2PF (t) + b3

(2)

where a1, a2, a3, b1, b2, b3 are some coefficients. The
equations can be rewritten to give the coefficients some
more physically meaningful form:

dPF (t)

dt
= RF [PF (t)− PF,eq]+

+σH→F [PF (t)− PH (t)]

dPH (t)

dt
= RH [PH (t)− PH,eq]+

+σF→H [PF (t)− PH (t)]

(3)

Here RF and RH are the intrinsic relaxation rates of
19F and 1H nuclei, σF→H and σH→F are the rates of
polarization transfer from 19F to 1H and reverse, respec-
tively. Now, let us consider two scenarios for validating
the equations:

a. In the absence of cross-relaxation, i.e. when
σF→H = σH→F = 0, both types of nuclei will expo-
nentially relax with their respective rates RF and
RH and polarizations will tend to their ther-
mal equilibrium values, PH (t→∞) → PH,eq and
PF (t→∞)→ PF,eq.

b. In the absence of intrinsic relaxation, i.e. when
RF = RH = 0, the nuclei will only cross-relax.
However, since only zero-quantum cross-relaxation
is active, such cross-relaxation equalizes the polar-
izations over time, which is described by the sec-
ond term in the left-hand side of Eqns.3. Further-
more, the cross-relaxation without intrinsic relax-
ation conserves the total spin angular momentum,
such that

NHPH (t) +NFPF (t) = const (4)

Combining Eqs. (3,4) gives:

d (NHPH (t) +NFPF (t))

dt
=

= (NHσF→H +NFσH→F ) (PF (t)− PH (t)) = 0
(5)
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The expression equals zero at all times, only if
NFσF→H + NHσH→F = 0, therefore σH→F =
−NF /NHσF→H .

Finally, after renaming σ = σH→F one obtains the two
equations, describing the evolution of polarization:

dPF (t)

dt
= −RF [PF (t)− PF,eq]−
−σ [PF (t)− PH (t)]

dPF (t)

dt
= −RH [PH (t)− PH,eq] +

+σ
NF
NH

[PF (t)− PH (t)]

(6)

ESTIMATE OF SPECTRAL DIFFUSION EFFECT
IN AN INHOMOGENEOUS ESR LINE

After excitation by MW irradiation, electron flip-flops
cause a hopping state exchange between electron spins.
The number of flips it makes before the magnetization
has decayed due to longitudinal relaxation T1e is given
by: Nh ∼ T1e/τc, where τc is the electron correlation
time. Therefore the electron frequency after this diffusion

process is given by
√
< ∆ν2 > ∼ Dee

√
Nh = Dee

√
T1e

tc
∼

100 MHz, where the correlation time is estimated as τc ∼
1/Dee, and Dee ∼ 3 MHz is a typical dipolar interaction
for [BDPA]=40 mM, and T1e ∼1 ms [3]. Therefore, under
these conditions the width of the hole burnt by the MW
irradiation is greater than the width of the BDPA ESR
line, resulting in a very efficient saturation of it. For
larger values of T1e ≈0.3 s as extrapolated from ref.[4]
data, the width of the hole burnt by the MW irradiation
is even larger

√
< ∆ν2 > ∼ 1000 MHz.

ADDITIONAL EVIDENCE FOR A
CROSS-RELAXATION BETWEEN 1H AND 19F

NUCLEI

As pointed out in the main text, the cross-relaxation
can also be detected in the experiments, where the re-
covery of 1H- and 19F magnetization is followed after a
saturation of 19F-nuclei by a train of RF pulses. The
pulse sequence, and main results are shown in Fig.S2
In addition, cross-relaxation between 1H and 19F can be
detected by recording the DNP spectra with a fine step
in MW frequency, as shown in Fig.S3.
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FIG. S1. Field-sweep ESR spectra of BDPA in 25/75 (% v/v) fluorobenzene/toluene recorded for samples of two concentrations.
(RED) [BDPA]=1 mM, the detection is performed by integrating the free induction decay signal after a 500 ns π/2 pulse.
(BLACK) [BDPA]=40 mM, the detection is performed by integrating the echo intensity after π/2-τ -π/2-τ -π-τ -echo sequence,
with tπ/2 = 100 ns, tπ = 200 ns. Signals are normalized to their respective maximum value.
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FIG. S2. (A) The pulse sequence for recording the recovery of 1H- (red) and 19F-nuclei to thermal equilibrium after polarizing
the nuclei with MW irradiation and saturation of 19F-nuclei. Recovery of 1H- (BLACK) and 19F-signals (RED) in a sample of
25/75 (% v/v) fluorobenzene/toluene containing (B) [BDPA]=40 mM and (C) [TEMPO]=40 mM (2,2,6,6-tetramethylpiperidine
1-oxyl).
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FIG. S3. The DNP spectra of 1H- (BLACK) and 19F-nuclei (RED) recorded after tbu=30 s of build-up for a sample of 25/75 (%
v/v) fluorobenzene/toluene containing [BDPA]=40 mM. The signal intensity is normalized to its maximum value, the horizontal
axis is offset by ω0/2π = 93.93 GHz, the data is recorded in steps of 2 MHz of the microwave frequency ωMW /2π. Solid lines
show the fits with Gaussian functions as explained in the main text.
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MINIMAL MODELS OF SOLID EFFECT,
HETERONUCLEAR THERMAL MIXING AND

HETERONUCLEAR CROSS EFFECT DNP

Frame Transformation

In the following section we explain how to obtain an
average Hamiltonian Ĥav that describes both the spin
dynamics due to solid effect (SE DNP) and to heteronu-
clear thermal mixing (hn-TM DNP). In both cases the
spin dynamics is described by a zero-quantum Hamilto-
nian. By transferring the master equation into a frame
rotating with the frequencies of these zero-quantum spin
transitions oscillating terms in the density operator are
generated. We will average the master equation to de-
rive an effective Hamiltonian that describes polarisation
transfer due to SE DNP and hn-TM DNP. The zero-
quantum transitions are represented by the Hamiltonian
Ĥ0 which we previously introduced (see Eq. (4) of the
main text). The transformed density operator is

ρ̂ = e−iĤ0tρ̂′eiĤ0t.

The nuclear polarization dynamics remains unchanged
in the new frame, since the operator Ĥ0 commutes with

the nuclear Zeeman orders Î
(k)
jz , Ĵ

(l)
jz . The Liouville-von

Neumann equation is transformed as

dρ̂/dt = −i[Ĥ, ρ̂] −→ dρ̂′/dt = −i[Ĥ ′(t), ρ̂′]

where the transformed Hamiltonian Ĥ ′(t) consists of
the time dependent microwave irradiation Ĥ ′mw(t) and
electron-nuclear interaction Ĥ ′en(t) terms

Ĥ ′(t) = eiĤ0t(Ĥ − Ĥ0)e−iĤ0t =

= Ĥ ′mw(t) + Ĥ ′en(t)
(7)

with

Ĥ ′mw(t) = eiĤ0tĤmwe
−iĤ0t,

Ĥ ′en(t) = eiĤ0tĤene
−iĤ0t.

Using the facts that ˆ̄H0 (see Eq. (5) main text) commutes
with Ĥ0, the nuclear Zeeman operators commute with
Ĥmw and the electron Zeeman operators commute with
Ĥen and applying the standard algebraic properties of
the spin operators, we obtain

Ĥ ′mw(t) =
ω1

2

ei∆t∑
j

eiĤ
0tŜj+e

−iĤ0t + h.c.

 ,
Ĥ ′en(t) =

1

2

[
eiωHt

∑
k,j

B
(H)
kj eiĤ

0tÎ
(k)
j+ Ŝjze

−iĤ0t+

+eiωF t
∑
l,j

B
(F )
lj J

(l)
j+e

iĤ0tŜjze
−iĤ0t + h.c.

]
.

(8)

In the next step we consider the microwave irradiation
term, that we divide into the secular and non-secular
parts

Ĥ ′mw(t) = Ĥ0
mw + ˆ̃Hmw(t).

The secular part

Ĥ0
mw = Ĥ ′mw(t) (9)

characterizes the constant time average of the operator
Ĥ ′mw(t) (throughout we use an overline to denote time

averages) and the non-secular part ˆ̃Hmw(t) describes the
oscillating part with zero time average. To take into ac-
count the effect that the non-secular part has on the
spin dynamics, we apply a methodology similar to the
average Hamiltonian theory[5]. More specifically, the
Hamiltonian is transformed into the interaction repre-

sentation frame with respect to ˆ̃Hmw(t), followed by re-
placing the corresponding transformation operator with
the first terms of Magnus expansion. First, we carry out
a frame transformation

ρ̂′ = Û(t)ρ̂′′Û†(t),

where the unitary operator Û(t) satisfies the equation

˙̂
U = −i ˆ̃Hmw(t)Û , Û(0) = 1. (10)

The Liouville-von Neumann equation is transformed to

dρ̂′/dt = −i[Ĥ ′(t), ρ̂′] −→ dρ̂′′/dt = −i[Ĥ ′′(t), ρ̂′′]

where the transformed Hamiltonian Ĥ ′′(t) takes the form

Ĥ ′′(t) = Û†(t)
[
Ĥ ′(t)− ˆ̃Hmw(t)

]
Û(t) =

Û†(t)Ĥ0
mwÛ(t) + Û†(t)Ĥ ′en(t)Û(t).

(11)

Since H̃mw commutes with the nuclear Zeeman orders,
the nuclear polarization dynamics in the new frame re-
mains unchanged.

We analyze now under which conditions zero-quantum
transitions can be induced by the applied microwave
field. According to Eq. (5) in the main text, the oper-
ator Ĥ0 that we used for the first frame transformation
describes the broadening of the electron resonance due
to the electron g-anisotropy, electron dipolar coupling
and electron-nuclear hyperfine coupling. The difference
between the largest and the smallest eigenvalue of Ĥ0,
Λ = λ0

max − λ0
mindetermines the spectral half-width of

the electron resonance. At the experimental static mag-
netic field of B0 = 3.4 T, the half-width is estimated to
be Λ ∼ 20 MHz, a value much smaller than the nuclear
Larmor frequencies ωH ∼ 145 MHz for 1H and ωF ∼ 136
MHz for 19F at this field strength. We can then con-
clude from inspecting Eq. (8) that the non-secular part
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ˆ̃Hmw(t) of the microwave irradiation term can only be
on resonance with the oscillating electron-nuclear term
Ĥ ′en(t) and induce zero quantum transitions if the mi-
crowave frequency offset ∆ is much larger than λ0

max, that
is well outside the ESR line, and comparable to one of the
nuclear frequencies. In this particular case the Hamilto-
nian represents polarization transfer from the electrons to
one of the nuclei by the homonuclear SE. For |∆| � Λ,
the solution to Eq. (10) is well approximated by first
terms of Magnus expansion:

Û(t) ∼ 1− i
∫ t

0

ˆ̃Hmw(t′) dt′

where the deviation of Û(t) from the identity operator
given by the integral term is small, not exceeding a mag-
nitude ∼ ω1/Λ� 1. Substituting this approximation for
Û into Eq. (11) enables us to write for Ĥ ′′

Ĥ ′′(t) ∼ Ĥ0
mw + Ĥ ′en(t)+

+i

[∫ t

0

ˆ̃Hmw(t′) dt′, Ĥ0
mw + Ĥ ′en(t)

]
∼

∼ Ĥ0
mw + Ĥ ′en(t) + ĤSE

(12)

with

ĤSE = i

[∫ t

0

ˆ̃Hmw(t′) dt′, Ĥ ′en(t)

]
. (13)

Here we neglected the small contribution of Ĥ0
mw in the

commutator in Eq. (12) and kept the secular time average
part of Ĥ ′en(t) in the commutator. The latter represents
the effective energy of the electron-nuclear exchange due
to SE. The commutator defining ĤSE in Eq. (13) can be
further modified. According to Eq. (8) and the fact that

ωH,F � Λ,
∣∣B(H,F )

k,lj

∣∣ (14)

the electron-nuclear interaction term Ĥ ′en(t) is fast oscil-
lating with zero time average. This implies that its time
integral is also oscillating without any time evolution.
Since the time derivative of an oscillating function has
zero time average, we can write

0 =
d

dt

[∫ t

0

ˆ̃Hmw(t′) dt′,

∫ t

0

Ĥ ′en(t′) dt′
]

=

=

[
ˆ̃Hmw(t),

∫ t

0

Ĥ ′en(t′) dt′
]
+

+

[∫ t

0

ˆ̃Hmw(t′) dt′, Ĥ ′en(t)

]
.

Hence, Eq. (13) can be rewritten

ĤSE = −i
[

ˆ̃Hmw(t),

∫ t

0

Ĥ ′en(t′) dt′
]
. (15)

Eq. (12) contains still the fast oscillating term Ĥ ′en(t).
An adiabatic elimination can be carried out using the
Krylov-Bogolvyubov averaging procedure described in
our previous works [7, 8] to obtain an effective time-
independent term. This procedure uses the Fourier ex-
pansion

Ĥ ′en(t) =
∑
s

(
Ĝse

iλst + Ĝ†se
−iλst

)
(16)

where the eigenvalue set {λs > 0} represents the positive
part of the spectrum of the operator Ĥ ′en(t). The first
order Krylov-Bogolyubov approximation is the time av-
erage of Ĥ ′en(t) that is zero, so the first adiabatic approx-
imation is given by the second order Krylov-Bogolyubov
approximation

Ĥen
hnTM =

∑
s

λ−1
s

[
Ĝs, Ĝ

†
s

]
. (17)

As we will discuss below, this term of the Hamiltonian
describes the effective energy of the electron-nuclear ex-
change due to hn-TM DNP . It is important to point out,
that the same result could be obtained by applying a Flo-
quet transformation, followed by Van Vleck’s perturba-
tion theory to obtain the effective Hamiltonian[6]. The
Eq. (17) is essentially a multifrequency (or multi-mode)
analogue of the first term of effective Floquet Hamilto-
nian.

Combining the microwave, SE and hn-TM contribu-
tions (9), (15), (17), this leads to the effective time inde-
pendent average Hamiltonian that describes the electron-
nuclear BDPA – 1H – 19F spin dynamics

Ĥav = Ĥ0
mw + ĤSE + Ĥen

hnTM. (18)

The rest of this section is devoted to the estimation of
the components of the average Hamiltonian (18) in terms
of the system parameters and properties of the ESR line.
We will also derive the minimal SE-hn-TM model de-
scribed in the main text.

Average Hamiltonian for SE DNP

Introducing the notation for the spin operators after
transformation to the frame rotating with the frequency
of the zero-quantum coherences

Ŝ′j+(t) ≡ eiĤ0tŜj+e
−iĤ0t,

Î
′(k)
j± Ŝ′j+(t) ≡ eiĤ0tÎ

(k)
j± Ŝj+e

−iĤ0t,

Î
′(k)
j+ Ŝ′jz(t) ≡ eiĤ

0tÎ
(k)
j+ Ŝjze

−iĤ0t,

Ŝ′jz(t) ≡ eiĤ
0tŜjze

−iĤ0t,

(19)
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it follows from Eqs. (8), (9) and (19)

Ĥ0
mw =

ω1

2

∑
j

ei∆tŜ′j+(t) + h.c.

 . (20)

In accordance with Eq. (8), (14), the operator ˆ̄Hen(t) is
fast oscillating with (apart from a non-important con-
stant shift)∫ t

0

Ĥ ′en(t′) dt′ ∼ 1

2

[
eiωHt

iωH

∑
k,j

B
(H)
kj eiĤ

0tÎ
(k)
j+ Ŝjze

−iĤ0t+

+
eiωF t

iωF

∑
l,j

B
(F )
lj Ĵ

(l)
j+e

iĤ0tŜjze
−iĤ0t + h.c.

]
.

Eqs. (8) and (15) give then

ĤSE =
ω1

4

[
1

ωH

∑
k,j

B
(H)
kj ei(∆+ωH)tÎ

′(k)
j+ Ŝ′j+(t)+

+
1

ωH

∑
k,j

B
(H)∗
kj ei(∆−ωH)tÎ

′(k)
j− Ŝ′j+(t)+

+
1

ωF

∑
l,j

B
(F )
lj Ĵ

(l)
j+ e

i(∆+ωF )tŜ′j+(t)+

+
1

ωF

∑
l,j

B
(F )∗
lj Ĵ

(l)
j− e

i(∆−ωF )tŜ′j+(t) + h.c.

]
.

(21)

It follows also from Eqs. (8) and (19)

Ĥ ′en(t) =
1

2

[
eiωHt

∑
k,j

B
(H)
kj Î

′(k)
j+ Ŝ′jz(t)+

+eiωF t
∑
l,j

B
(F )
lj Ĵ

(l)
j+Ŝ

′
jz(t) + h.c.

]
.

(22)

The time-averaged terms in Eq. (21) can be simplified
further by analysing the frequency spectrum of the oscil-
lations that arise from the transformation into the zero-
quantum frame (Eq. (7)). We will show that rather than
keeping track of each frequency it is possible to replace
the oscillating terms by spectral densities. We start in
the spectral analysis with the operator Ŝ′j+(t) that gen-
erates the Fourier expansion

Ŝ′j+(t) =
∑
s

fjsÔjse
iλst

where the set of real frequencies {λs} is given by dif-
ferences λ0

q − λ0
q′ of the eigenvalues of the operator Ĥ0.

The amplitudes fjsÔjs are generated by the off-diagonal

matrix elements of the operator Ŝj+ in the basis of eigen-

states of Ĥ0. Here fjs is the factor that depends on the
frequency λs. It is possible to replace this discrete Fourier

expansion by its integral approximation if the spectrum
of operator Ŝ′j+(t) is sufficiently dense. Introducing the
average frequency difference ν between two consecutive
eigenvalues of the set {λs}, we can approximate the fre-
quencies as λs = sν where the integer s runs through the
interval [−s+, s+] with s+ν = Λ ≡ max |λs| determined
by the half-width of the spectrum Λ. In other words, if
the spectrum of the operator Ŝ′j+(t) is sufficiently dense,
we can replace the set {λs} by a new set of equally spaced
frequencies. If ν � Λ and s+ � 1 we can write

Ŝ′j+(t) =

s+∑
s=−s+

fj(sν)Ôjse
isνt ∼ 1

ν

∫ +∞

−∞
fj(λ)Ô′je

iλtdλ.

(23)
Here fj(λ) is the dimensionless continuous envelope spec-
tral density function that approximates the amplitudes
fjs = fj(sν) and Ô′j is a frequency independent operator

that satisfies Eq. (23). We can find Ô′j by setting t = 0:

Ŝ′j+(0) = Ŝj+ ∼
(

1

ν

∫ +∞

−∞
fj(λ)dλ

)
Ô′j

from which we can conclude that Ô′j = Ŝj+ if
1
ν

∫ +∞
−∞ fj(λ)dλ ∼ 1, which is equivalent to requiring

that the zeroth moment of the spectral density function
µ0[fj(λ)] = 1. We can then approximate Ŝ′j+(t) by

Ŝ′j+(t) =

(
1

ν

∫ +∞

−∞
fj(λ)eiλtdλ

)
Ŝj+. (24)

Following an identical set of arguments we find for

Î
′(k)
j± Ŝ′j+(t) that

Î
′(k)
j± Ŝ′j+(t) =

(
1

ν

∫ +∞

−∞
f ′kj(λ)eiλtdλ

)
Î

(k)
j± Ŝj+, (25)

where f ′kj(λ) is another spectral density function with
zeroth moment µ0[f ′jk(λ)] = 0

Using then the following shift formula that is valid for
any frequency ω and any spectral density function f(λ),

eiωt
∫ +∞

−∞
f(λ)eiλtdλ =

∫ +∞

−∞
f(λ− ω)eiλtdλ = f(−ω).

and substituting (31) and (25) into Eqs. (20), (21), we
obtain the following estimates for the microwave and SE
parts of the average Hamiltonian

Ĥ0
mw =

ω1

2

∑
j

fj(∆)Ŝj+ + h.c.

 , (26)
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ĤSE =
ω1

4

[
1

ωH

∑
k,j

B
(H)
kj f ′kj(∆ + ωH)I

(k)
j+ Ŝj++

+
1

ωH

∑
k,j

B
(H)∗
kj f ′kj(∆− ωH)Î

(k)
j− Ŝj++

+
1

ωF

∑
l,j

B
(F )
lj fj(∆ + ωF )Ĵ

(l)
j+Ŝj++

+
1

ωF

∑
l,j

B
(F )∗
lj fj(∆− ωF )Ĵ

(l)
j−Ŝj+ + h.c.

]
(27)

where we inverted the argument λ→ −λ of the spectral
densities fj(λ), f ′kj(λ).

Properties of the Spectral Densities fj(λ) and f ′
kj(λ)

To characterise the shape of the spectral density func-
tion fj(λ) we can calculate its moments

µr[fj ] =
1

ν

∫ +∞

−∞
λrfj(λ)dλ, r = 0, 1, . . . ,

using the time derivatives of the operator Ŝ′j+(0) = Ŝj+.
It follows from Eq. (19) and Eq. (23) that the first time
derivative at t = 0 gives

d

dt
Ŝ′j+(0) = i

[
Ĥ0, Ŝj+

]
=

=
[
∆

(g)
j +

∑
k

Akj Î
(k)
jz + 2

∑
j′ 6=j

Djj′ Ŝj′z

]
Ŝj++

+
∑
j′ 6=j

Djj′ ŜjzŜj′+.

(28)

The second time derivative at t = 0 provides

d2

dt2
Ŝj+(0) = −

[
Ĥ0,

[
Ĥ0, Ŝj+

]]
=

=
[ (

∆
(g)
j

)2

+
1

4

∑
k

A2
kj

]
Ŝj++

+
∑
j′ 6=j

D2
jj′

(
5Ŝj+

4
+ Ŝj′+

)
.

(29)

For simplicity, in the last formula we kept only single-
spin orders. The moments µr(fj) are then obtained from

Eq. (28) and Eq. (29) by factoring out Ŝj+ and using the
remaining terms

µ1[fj ] =
1

ν

∫ +∞

−∞
λfj(λ) dλ ∼

∼ ∆
(g)
j +

∑
k

Akj Î
(k)
jz + 3

∑
j′ 6=j

Djj′ Ŝj′z,

µ2[fj ] =
1

ν

∫ +∞

−∞
λ2fj(λ) dλ ∼

∼
(

∆
(g)
j

)2

+
1

4

∑
k

A2
kj +

9

4

∑
j′ 6=j

D2
jj′ .

(30)

The first moment µ1[fj ] determines the mean of the spec-
tral density fj(λ), i.e. the position of its peak. The

magnitude
(
µ2[fj ]− µ2

1[fj ]
)1/2

determines its dispersion,
i.e., the half-width of fj(λ). For BDPA radicals [9], the
electron hyperfine coupling to the structural 1H spins,
defined by the set of coefficients Akj , dominates over the
electron-electron coupling with the coefficients Djj′ and

the g-anisotropy shift ∆
(g)
j . According to Eq. (30), the

spectral density fj(λ) is composed by a set of lines with

peaks determined by the hyperfine distribution Akj Î
(k)
jz

and broadened by the electron-electron coupling. The set

{Akj Î(k)
jz } arises from 8 nuclear 1H spins of the biphenyl

rings with dominating coupling to the unpaired electron
[9]. Because of the anisotropy of the hyperfine coupling,
all possible orientations of the dominating 8 structural
1H spins generate a highly dense set of lines that is sym-
metric with respect to zero (λ = 0). The characteristic
frequency difference between two consecutive eigenvalues
of the spectrum, ν ∼ Λ/28 ∼ 20/256 MHz ∼ 0.1 MHz
is smaller than the average coupling strength between
the neighbouring electrons for an experimental 40 mM
radical concentration, D0 ∼ 0.3 MHz. Hence, the lines
generated by the hyperfine coupling distribution {Akj}
well overlap, forming an effective continuous envelope.
This mean µ1[fj ] of spectral density fj(λ) can be esti-
mated using Eq. (30) neglecting the contribution of the

hyperfine interaction due to the fact that Î
(k)
jz = ±1/2.

The variance, however, keeps the corresponding hyper-
fine term. We can write with a good accuracy

µ1[fj ] =
1

ν

∫ +∞

−∞
λfj(λ) dλ ∼

∼ ∆
(g)
j + 3

∑
j′ 6=j

Djj′ Ŝj′z,

σ2[fj ] = −µ2
1[fj ] +

1

ν

∫ +∞

−∞
λ2fj(λ) dλ ∼

∼ 1

4

∑
k

A2
kj +

9

4

∑
j′ 6=j

D2
jj′ .

(31)

Similarly, we obtain for f ′kj in Eq. (25)

µ1[f ′kj ] =
1

ν

∫ +∞

−∞
λf ′kj(λ) dλ ∼

∼ ∆
(g)
j + 3

∑
j′ 6=j

Djj′ Ŝj′z,

σ2[f ′kj ] = −µ2
1[f ′kj ] +

1

ν

∫ +∞

−∞
λ2f ′kj(λ) dλ ∼

∼ 1

4

∑
k′ 6=k

A2
kj +

9

4

∑
j′ 6=j

D2
jj′ .

(32)

where we took into account the fact that the hyperfine

coupling Akj Î
(k)
jz Ŝjz of the kth 1H nucleus commutes with

the operators Î
(k)
j± Ŝj+ leading to a slightly narrower den-

sity f ′kj(λ) compared with fj(λ).
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Average Hamiltonian for hn-TM DNP

We proceed now to the evaluation of the hn-TM part
of the average Hamiltonian (18) using Eqs. (16) and (17).
According to Eq. (19), the time derivative of the sand-
wich Ŝ′jz(t) takes the form

d

dt
Ŝ′jz(t) = ieiĤ

0t
[
Ĥ0, Ŝjz

]
e−iĤ

0t =

=
i

2

∑
j′ 6=j

Djj′e
iH0t

(
Ŝj+Ŝj′− − h.c.

)
e−iĤ

0t =

=
i

2

∑
j′ 6=j

Djj′

[
Ŝ′j+(t)Ŝ′j′−(t)− h.c.

]
.

(33)

Using the result in Eq. (31) we get

Ŝ′j+(t)Ŝ′j′−(t) =

(
1

ν

∫ +∞

−∞
Fjj′(λ)eiλtdλ

)
Ŝj+Ŝj′− (34)

where the spectral density Fjj′(λ) is given by the convolu-
tion of the two spectral densities fj(λ), fj′(λ) previously
introduced,

Fjj′(λ) =
1

ν

∫ +∞

−∞
fj(λ

′)f†j′(λ
′ − λ)dλ′. (35)

Similarly, utilizing Eqs. (19), (25) and neglecting a small
frequency shift caused by the hyperfine coupling Akj ,

d

dt
Î
′(k)
j+ Ŝ′jz(t) = ieiĤ

0t
[
Ĥ0, Î

(k)
j+ Ŝjz

]
e−iĤ

0t =

+
i

2

∑
j′ 6=j

Djj′e
iĤ0tÎ

(k)
j+

(
Ŝj+Ŝj′− − h.c.

)
e−iĤ

0t =

=
i

2

∑
j′ 6=j

Djj′

[
Î
′(k)
j+ Ŝ′j+(t)Ŝ′j′−(t)− Î ′(k)

j− Ŝ′j+(t)Ŝ′j′+(t)
]
.

(36)
where

Î
′(k)
j+ Ŝ′j+(t)Ŝ′j′−(t) = Ukjj′(t)Î

(k)
j+ Ŝj+Ŝj′−,

Î
′(k)
j− Ŝ′j+(t)Ŝ′j′+(t) = U†kjj′(t)Î

(k)
j+ Ŝj−Ŝj′+,

Ukjj′(t) =
1

ν

∫ +∞

−∞
F ′kjj′(λ)eiλtdλ,

F ′kjj′(λ) =
1

ν

∫ +∞

−∞
f ′kj(λ

′)f†j′(λ
′ − λ)dλ′.

(37)

The time integration of Eqs. (33) and (36) returns the
estimates

Ŝ′jz(t) = Ŝjz +
i

2

∑
j′ 6=j

Djj′

[∫ t

0

Ŝ′j+(t′)Ŝ′j′−(t′) dt′ − h.c.
]
,

Î
′(k)
j+ Ŝ′jz(t) = Î

(k)
j+ Ŝjz+

+
i

2

∑
j′ 6=j

Djj′

[∫ t

0

Î
′(k)
j+ Ŝ′j+(t′)Ŝ′j′−(t′) dt′ − h.c.

]
.

The two oscillating terms in Eq. (22) can be replaced
using spectral densities

eiωF tŜ′jz(t) −→ δ(λ− ωF )Ŝjz+

+
1

2

∑
j′ 6=j

Djj′

[
Fjj′(λ− ωF )

λ− ωF
Ŝj+Ŝj′−+

+
F †jj′(ωF − λ)

ωF − λ
Ŝj−Ŝj′+

]
eiωHtÎ

′(k)
j+ Ŝ′jz(t) −→ δ(λ− ωH)Î

(k)
j+ Ŝjz+

+
1

2

∑
j′ 6=j

Djj′ Î
(k)
j+

[
F ′kjj′(λ− ωH)

λ− ωH
Ŝj+Ŝj′−+

+
F ′†kjj′(ωH − λ)

ωH − λ
Ŝj−Ŝj′+

]
,

(38)

where δ(λ) is the Dirac delta-function and Fjj′(λ),
F ′kjj′(λ) are defined by Eqs. (35), (37). Eqs. (16), (17)
and (38) can then be combined to obtain an estimate of
the hn-TM part of the average Hamiltonian

Ĥen
hnTM = − 1

8ωHωF

∑
k,l,j,j′

Ŵ
(kl)
jj′ Ŝj+Ŝj′− + h.c.,

Ŵ
(kl)
jj′ = Djj′

[
g+
jj′ V̂

(kl)
jj′ + g−jj′ V̂

(kl)†
jj′

]
,

V̂
(kl)
jj′ = B

(H)
kj Î

(k)
j+

[
B

(F )∗
lj Ĵ

(l)
j− −B

(F )∗
lj′ Ĵ

(l)
j′−

]
,

g±jj′ = Fjj′(∓ω), ω = ωH − ωF

(39)

where the density Fjj′(λ) is given by Eq. (35) and for
simplicity we neglected the small difference between the
widths of the densities fj(λ), f ′kj(λ) given by Eqs. (31),
(25).

Symmetry Breaking and Minimal Model

The four-spin flips Î
(k)
j± Ĵ

(l)
j∓Ŝj+Ŝj′− and their Hermi-

tian conjugates, in the hn-TM term given by Eq. (39)
mediate the polarization transfer of the difference of elec-
tron polarization to the polarization differences of the
nuclear species. This gives rise to peaks of opposite signs
for 1H and 19F nuclei near the electron microwave off-
set, comparable to the half-width of the ESR line: pos-
itive 19F and negative 1H peaks for ∆ ∼ Λ and positive
1H and negative 19F peaks for ∆ ∼ −Λ. The prerequi-
sites for the electron-nuclear polarization transfer is the
dispersion of the microscopic electron spectral densities
fj(λ) between the electron spins and the fact that the nu-
clear frequency difference ω is appreciably smaller than
the ESR line half-width. At a given electron offset ∆,
different electron spins have different effective microwave
field strengths ω1fj(∆) and the microwave term Ĥ0

mw cre-
ates polarization differences between them. The disper-
sion of fj(λ) along with the fact that ω < Λ causes the



S12

asymmetry |g+
jj′ | 6= |g

−
jj′ |, so the electron nuclear four-

spin flips that compose the ĤhnTM part of the average
Hamiltonian (18) create the net polarization difference
between 1H and 19F nuclear species. Due to the rela-
tion g+

jj′ = g−j′j , the (jj′) and (j′j) electron pairs gener-
ate the same enhancements of the nuclei attached to the
jth and j′th electrons where the nuclear species with the
smaller/larger Larmor frequency gets a positive/negative
polarization enhancement for ∆ ∼ Λ, opposite to the en-
hancements for ∆ ∼ −Λ.

As seen from Eq. (31), the dispersion of the mi-
croscopic electron densities fj(λ) is a combination of
the electron g-anisotropy and dispersion of the electron-
electron dipolar coupling. In fact, even in the absence

of the ∆
(g)
j , the means of the spectral densities fj(λ),

fj′(λ) of two electron spins correlate via the presence
of the coupling with other electrons. As a result, un-
like the hyperfine terms, the electron coupling terms∑
Djj′ Ŝj′z are not averaged out by different orienta-

tions Ŝj′z = ±1/2 and participate in creating differences
between the means of the densities fj(λ) that result in
the creation of electron polarization differences. We can
assume that each fj(λ) has roughly the same variance,
caused mainly by the hyperfine coupling that dominates
in the ESR linewidth.

To describe the macroscopic electron-nuclear dynamics
due to hn-TM, we use the minimal model Hamiltonian
that involves two effective electron spins and two effec-
tive unlike nuclear spins, with electron microwave irra-
diation and electron-nuclear flip-flop terms utilizing the
width of the electron resonance and a dispersion arising
from the electron dipolar coupling and possible electron
g-anisotropy. Since the electron polarization gradients
created by the microwave are transferred to the nuclei
in an effective two-electron two-nuclear process, the cho-
sen four-spin model is the minimal model that describes
the hn-TM mechanism. As the characteristic spectral
densities fj(∆) of this minimal two-electron model, we
use the shapes given by Eq. (31) with the maximal pos-
itive and maximal negative means µ1[fj ] and the same
variance σ2[fj ]. The variance is given roughly by the
width of the ESR line dominated by the hyperfine cou-
pling and influenced also by the electron-electron dipolar
coupling, as described in Eq. (31). According to the same
equation, the minimal and maximal means are written as
maxµ1[fj ] = d, minµ1[fj ] = −d where d is determined
by the combined dispersion of the electron g-anisotropy
and the electron-electron dipolar coupling

d = max
j

∣∣∣∆(g)
j +

3

2

∑
j′ 6=j

Djj′

∣∣∣.

From Eq. (39) we obtain the effective minimal hn-TM

Hamiltonian

ĤhnTM = Ĥmw
hnTM + Ĥen

hnTM,

Ĥmw
hnTM = ω1

[
f+(∆)Ŝ1x + f−(∆)Ŝ2x

]
,

Ĥen
hnTM = −DB

(H)B(F )

ωHωF

[
g+Î+Ĵ−+

+g−Î−Ĵ+

]
Ŝ1+Ŝ2− + h.c.,

f±(∆) = f(∆± d),

g+ =
1

ν

∫ +∞

−∞
f−(∆)f+(∆− ω)d∆,

g− =
1

ν

∫ +∞

−∞
f+(∆)f−(∆− ω)d∆,

ω = ωH − ωF .

(40)

Here ω1 is the microwave field strength, ωH,F are the
nuclear frequencies, D, B(H,F ) are the effective electron-
electron and electron-nuclear interaction strengths re-
spectively, f is a density normalized ESR lineshape of
a width A and d is the dispersion magnitude.

Due to the presence of two-spin flips Î
(k)
j± Ŝj+, Ĵ

(l)
j±Ŝj+

and their Hermitian conjugates, the SE term given by
Eq. (27) causes the polarization transfer from single elec-
tron spins to 1H and 19F nuclear spin species, with neg-
ative peaks of the same sign for ∆ ∼ ωH,F and positive
peaks of the same sign for ∆ ∼ −ωH,F . To describe
the macroscopic electron-nuclear dynamics due to SE,
we use the minimal model Hamiltonian that involves a
single electron spin and two effective unlike nuclear spins,
with electron microwave irradiation and electron-nuclear
terms utilizing the width of the electron resonance,

ĤSE = Ĥmw
SE + Ĥen

SE,

Ĥmw
SE = ω1f(∆)Ŝx,

Ĥen
SE = − ω1

4∆

[
B(H)

(
f+
H(∆)Î+Ŝ+ + f−H (∆)Î−Ŝ+

)
+B(F )

(
f+
F (∆)Ĵ+Ŝ+ + f−F (∆)Ĵ−Ŝ+

)]
+ h.c.,

f±H (∆) = f(∆± ωH).

f±F (∆) = f(∆± ωF ).

(41)

For simplicity, we use in Eq. (41) the same electron-
nuclear interaction strengths B(H), B(F ) as in the hn-TM
model (40).

The Heteronuclear Cross Effect

To evaluate the heteronuclear cross effect (hn-CE)
DNP dynamics, we consider two microwave irradiated
electron spins S1,2 with the first electron spin interacting
with a single nuclear spin I of the 1H species and a single
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nuclear spin J of the 19F species. The effective Hamil-
tonian written in the microwave rotating frame has the
form

ĤhnCE = Ĥ0
hnCE + Ĥmw

hnCE + Ĥen
hnCE (42)

where Ĥmw
hnCE characterizes the microwave irradiation en-

ergy, Ĥen
hnCE describes the semi-secular electron-nuclear

interaction energy, Ĥ0
hnCE is built of electron and nuclear

Zeeman interaction energy and the energy of the electron
dipolar coupling. Specifically,

Ĥmw
hnCE =

ω1

2

2∑
j=1

(
Ŝj+ + h.c.

)
,

Ĥen
hnCE =

1

2

(
B(H)Î+ +B(F )Ĵ+ + h.c.

)
Ŝ1z,

Ĥ0
HnCE =

2∑
j=1

(
∆jŜjz

)
+ ωH Îz + ωF Ĵz+

+D

(
2S1zŜ2z −

1

2
Ŝ1+Ŝ2− −

1

2
Ŝ1+Ŝ2−

)
(43)

with the microwave field strength ω1, 1H and 19F
electron-nuclear interaction strengths B(H), B(F ), nu-
clear Larmor frequencies ωH , ωF , the offsets ∆1,2 of
the electron Larmor frequencies from the microwave fre-
quency and the electron-electron interaction strength D.

For simplicity, we neglect the interactions S2 − I and
S2 − J of the nuclei with the second electron and ignore
the secular part of the S1 − I and S1 − J interactions,
as the latter does not participate in the resonance con-
dition (see below). We neglect also interactions between
the nuclear spins assuming that spin I of the 1H species
belong to a close electron vicinity while spin J of the 19F
species is relatively remote from the electrons.

We assume that the difference ∆1 − ∆2 between the
electron frequency offsets is caused by the electron g-
anisotropy and the secular part of the interaction be-
tween the electrons and nuclear spins.

The hn-CE resonance condition imposed on the effec-
tive offsets ∆1,2 is formulated in terms of the projection
of the Zeeman orders of the full Hamiltonian onto the
subspace generated by the system of S1,2 and I,J spins,

ĤZ =

2∑
j=1

(
∆′jŜjz +

∑
k

A
(j)
k Î

(j)
kz Ŝjz

)
+

+ωH Îz + ωF Ĵz +A(H)ÎzŜ1z +A(F )ĴzŜ1z.

Here A(H), A(F ) are the secular strengths of the S1 −
I,S1 − J coupling, A

(j)
k are the secular strengths of the

coupling between the electrons and nuclear spins I
(j)
k

other than I,J. We use also the electron frequency offsets
∆′1,2 before taking into account the hyperfine coupling.

The resonance condition relevant to hn-CE in the
1H – 19F require that either the |α1eβ2eαHβF 〉

and |β1eα2eβHαF 〉 states or the |α1eβ2eβHαF 〉 and
|α1eβ2eβHαF 〉 states are degenerate. In other words, one
of the following two conditions is satisfied

∆1 −∆2 = ω2 − ω1, ∆1 −∆2 = ω1 − ω2 (44)

where

∆j = ∆′j +
∑
k

A
(j)
k Î

(j)
kz , j = 1, 2,

are the effective electron frequency offsets that depend

on orientations of the “external” nuclear spins I
(j)
k . No-

tably, the secular part of the S1 − I or S1 − J hyperfine
interaction does not affect the resonance conditions.

Density Matrix Simulations

In simulations, we use the master equation

d

dt
ρ̂ = −i[Ĥeff , ρ̂] +

ˆ̂Dρ̂,

where Ĥeff is an effective Hamiltonian describing either
hn-TM, SE or CE, is given by Eqs. (40,41,42,43) and
the standard Lindbladian relaxation model is used that
describes single-spin Markovian jumps,

ˆ̂Dρ̂ =

2∑
j=1

[
Γ1+L(Ŝj+) + Γ1−L(Ŝj−) + Γ2L(Ŝjz)

]
+

+γ
(H)
+ L(Î+) + γ

(H)
1− L(Î−) + γ

(H)
2 L(Îz)+

+γ
(F )
+ L(Ĵ+) + γ

(F )
1− L(Ĵ−) + γ

(F )
2 L(Ĵz)

Γ1± =
1∓ pe

2
R1, Γ2 = 2R2,

γ
(H)
1± =

1∓ p(H)
n

2
r

(H)
1 , γ

(F )
1± =

1∓ p(F )
n

2
r

(F )
1 ,

γ
(H)
2 = 2r

(H)
2 , γ

(F )
2 = 2r

(F )
2 .

Here pe, p
(H)
n and p

(F )
n are the thermal polarizations of

the electron and 1H or 19F spins, R1,2, r
(H)
1,2 , r

(F )
1,2 are the

electron and nuclear longitudinal and transverse relax-
ation rates and we use the notation

L(X̂)ρ ≡ X̂ρ̂X̂† − 1

2

(
X̂†X̂ρ̂+ ρ̂X̂†X̂

)
.

Numerical solution of the master equation is used to
produce a macroscopic sweep DNP spectrum for SE and
hn-TM. To estimate the macroscopic sweep DNP spec-
trum for CE, the system is tuned to one of the resonances
given by Eq. (44)

∆2 = ∆1 ± δ, δ ≡ ω1 − ω2,
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the first electron frequency offset ∆1 is swept and then
the convolution is taken of the resulting nuclear polariza-

tions p
(j)
± (∆1) with the shape g(ω) of the ESR line

p̄(j)(ω) =

∫ +∞

−∞
g(ω + ∆1)

[
g(ω + ∆1 + δ)p

(j)
+ (∆1)+

+g(ω + ∆1 − δ)p(j)
− (∆1)

]
d∆1,

(45)
where ω is the microwave frequency.
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