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S.1. Derivation of Redox Equilibrium Expression 

According to the first and second laws of thermodynamics, at constant temperature (T) and 

pressure (P), the chemical equilibrium of a single or multi-reaction system is established when the 

following criterion is satisfied, 

j j

j

= 0ν   (S.1) 

where ν and μ refer to the stoichiometric coefficient and corresponding chemical potential (defined 

below in Equation S.2) of component j, respectively.[1] 
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Here, G̅ and y represent the molar Gibbs energy and mole fraction of each pure component in its 

physical state (i.e., gas, liquid, or solid) within an ideal solution; the universal gas constant is 

denoted by R. More generally, thermodynamic activities are introduced to describe non-ideal or 

real mixtures and may be defined relative to standard states other than pure components.[2] Thus, 

for convenience, Equation S.2 is rewritten to leverage the activity (a) and standard molar Gibbs 

energy (G̅°) of component j, which is defined at fixed composition and ambient pressure (i.e., 1 

bar).   
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Consider the following reduction reaction of a generic binary metal oxide (MxOy),  
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where δred and δox are the oxygen nonstoichiometry at reduction and oxidation states, respectively. 

Chemical equilibrium of Equation S.4 may be mathematically described via substitution of 

Equation S.3 into Equation S.1; the result is shown below. Gaseous oxygen is assumed ideal, such 

that the fugacity coefficient is equal to unity, and thus the activity is replaced by partial pressure 

(p), as is typical.[3] Recall that the standard molar Gibbs energy of O2 is 0 kJ mol-1. 
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The difference in the Gibbs energies of products and reactants, weighted by their stoichiometric 

coefficients (i.e., LHS of Equation S.5), will be expressed hereafter as ΔG̅red
° and is otherwise 

referred to the standard molar Gibbs energy change of Equation S.4. As noted by Cooper et al., 

taking the limit for an infinitesimal change in oxygen nonstoichiometry (i.e., Δδ → 0) yields the 

following expression for the standard partial molar Gibbs energy of oxygen vacancy formation 

(Δg̅O
°).[4]  
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Partial properties are functions of composition, and in the limit that a solution becomes pure in 

species j, the partial and total properties (denoted here by lowercase and uppercase letters, 

respectively) approach. As a result, the RHS of Equation S.6 and LHS of Equation S.5 are 

mathematically equivalent. 
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Furthermore, in this limit, the activities of the solid are uniform, and thus Equation S.5 may be 

simplified as follows. 
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Importantly, Δg̅O
° can be additionally related to the standard partial molar enthalpy (Δh̅O

°) 

and entropy (Δs̅O
°) through differentiation with respect to temperature; the governing equation for 

chemical equilibrium of metal oxide reduction is shown below. 
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Under the assumption that Δh̅O
° and Δs̅O

° are temperature-independent, these thermodynamic state 

functions can be determined from equilibrium δ versus pO2 isotherms, without requiring explicit 

knowledge of defect chemistry, by evaluating the slope and intercept of generated van’t Hoff plots 

at constant composition. This methodology has been previously adopted to extract 

compositionally-dependent, partial-molar properties of oxygen vacancy formation for ceria[5] and 

ceria-zirconia solid solutions,[6] thus enabling determination of equilibrium δ as a function of pO2 

and T. For this work, the digitized equilibrium data and concomitant partial properties for CeO2-δ 

and Ce1-xZrxO2-δ (x ≤ 0.20) can be observed in Figure S2. It should be noted that although 

equilibrium yields were evaluated slightly outside of the experimentally considered temperature 

ranges, the strong linear dependence observed in van’t Hoff plots suggests that the assumption of 

temperature independence on Δh̅O
° and Δs̅O

° is valid.  
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Figure S1. Compilation of chemical-looping techniques that leverage the oxygen-exchange 

capacity of metal oxides, denoted as MxOy, to produce fuel and/or sequester CO2. (A) Chemical-

looping reforming, CLR. (B) Conventional chemical-looping combustion, CLC. (C) Three-reactor 

chemical-looping hydrogen generation, TRCL. (D) Two-reactor chemical-looping hydrogen 

generation, CLH (also referred to herein as CLC). In each process, CO2 can replace H2O as the 

steam reactor oxidant to generate pure streams of CO. 



 

Figure S2. Extraction of standard partial molar properties for the reduction of CeO2-δ (left 

panels) and Ce1-xZrxO2-δ (right panels) from previous works. Equilibrium δ versus pO2 isotherms 

were digitized and are shown for (A) CeO2-δ and (C) Ce0.9Zr0.1O2-δ. Following the van’t Hoff 

methodology discussed in Section S.1, Δh̅O2
° (solid lines) and Δs̅O2

° (dashed lines) of considered 

oxides were determined as a function of δ and compared to representative literature, as shown in 

subplots (B) and (D). Here, Δh̅O2
° and Δs̅O2

° are equal to 2Δh̅O
° and 2Δs̅O

°, respectively (96.48 kJ 

mol-1 = 1 eV and 4.184 J mol-1 K-1 = 1 EU). 



 

Figure S3. Representative scanning electron microscopy, SEM (left panel), and energy-dispersive 

X-ray spectroscopy, EDS (right panels), images of the Ce0.9Zr0.1O2 powder used for 

thermogravimetric measurements. The position-dependent distributions of Ce, Zr, and O elements 

in Ce0.9Zr0.1O2 are indicated by their respective colors in each EDS map. 
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