Supporting Information for "Dynamical Signatures from Competing, Nonadiabatic Fragmentation Pathways of S-Nitrosothiophenol"

K. Jacob Blackshaw,¹ Marcus Marracci,² Robert T. Korb,¹ Naa-Kwarley Quartey,¹ Annalise K. Ajmani,¹ David J. Hood,¹ Christopher J. Abelt,¹ Belinda I. Ortega,² Kate Luong², Andrew S. Petit,^{*,2} Nathanael M. Kidwell^{*,1}

¹Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795, USA

² Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA

* Authors to whom correspondence should be addressed. E-mail: nmkidwell@wm.edu; apetit@fullerton.edu

Table	of	Contents
-------	----	----------

	Page(s)
Figure S1: Electronic absorption spectrum of PhSNO in CH ₂ Cl ₂ from 470-650 nm.	S3
Figure S2: Electronic absorption spectrum of PhSNO in CH ₂ Cl ₂ from 350-650 nm.	S3
Figure S3: ¹ H NMR (400 MHz, CD_2Cl_2) of PhSH (0.09 M , bottom) and after reacting with N_2O_4 /Norit (0.4 g) for 49 min at 0°C (top).	S4
Figure S4: The (18,14) active space used for the S-N relaxed scan	85
Figures S5-S8: Examples of the (16,13) active spaces used for the C-S-N-O unrelaxed torsion angle scans	S6-S9
Figures S9: The dominant molecular orbitals associated with the $S_0 \rightarrow S_1$, $S_0 \rightarrow S_2$, and $S_0 \rightarrow S_3$ transitions at the optimized geometry of the <i>syn</i> conformer	S10
Figures S10: The singly occupied molecular orbitals in the dominant electron configurations of the T_1 , T_2 , T_3 , and T_4 states at the optimized geometry of the <i>syn</i> conformer	S11
Figures S11-S12: The singly occupied molecular orbitals in the dominant electron configurations of the S_0 - S_3 and T_1 - T_4 states at the geometry with a 4.40 Å S-N bond length	S12-S13
Figure S13 : A zoomed in version of Figure 1 showing the results of the relaxed scan along the S-N bond dissociation coordinate	S14
Figures S14-S19 : Unrelaxed scans along the C-S-N-O torsion angle coordinate at fixed values of the S-N bond length	S15-S20
Figure S20 : Plots of the singly occupied molecular orbitals of T_2 and T_3 at a C-S-N-O torsion angle of 0° and various values of R_{SN}	S21
Figure S21 : Plots of the singly occupied molecular orbitals of T_2 and T_3 at a C-S-N-O torsion angle of 90° and various values of R_{SN}	S22
Tables S1-S9 : Relative electronic energies used to generate Figure 1 and Figures S14-S19. Table S3 lists the calculated transition dipole moments of PhSNO	S23-S30

Figure S1: Electronic absorption spectrum of PhSNO in CH₂Cl₂. This spectrum was generated by reaction of PhSH (0.045 **M** in CH₂Cl₂) with N₂O₄/Norit (0.2 g) at 0°C for 40 min. The absorbance of 0.61 at 570 nm ($\epsilon = 53 \text{ M}^{-1}\text{cm}^{-1}$)[§] indicates a 26% conversion.

Figure S2: Electronic absorption spectrum of PhSNO in CH_2Cl_2 (above) showing the short wavelength region. This region also contains absorptions from PhSH and PhSSPh.

[§]Zolfigol, M. A.; Shirini, F.; Choghamarani, A. G.; Ghofrani, E. Silica Chloride/NaNO₂ as a Novel Heterogeneous System for Production of Thionitrites and Disulfides Under Mild Conditions *Phosphorus, Sulfur, and Silicon and the Related Elements* **2003**, *178*, 1477-1481.

Figure S3: ¹H NMR (400 MHz, CD_2Cl_2) of PhSH (0.09 M, bottom) and after reacting with N₂O₄/Norit (0.4 g) for 49 min at 0°C (top). The conversion is 93% and the yield of PhSNO is 29% by integration.

Figure S4: The (18,14) active space used in the relaxed scan along the S-N bond dissociation coordinate. The molecular orbitals in the first two columns are doubly occupied in the Hartree-Fock ground state whereas those in the last column are virtual.

Figure S5: The (16,13) active space used in the torsion scan at $R_{S-N} = 1.9$ Å and a C-S-N-O torsion angle of 0°. Reading from left to right and top to bottom, the first eight molecular orbitals are doubly occupied in the Hartree-Fock ground state whereas the final five molecular oarbitals are virtual.

Figure S6: The (16,13) active space used in the torsion scan at $R_{S-N} = 1.9$ Å and a C-S-N-O torsion angle of 30°. Reading from left to right and top to bottom, the first eight molecular orbitals are doubly occupied in the Hartree-Fock ground state whereas the final five molecular oarbitals are virtual.

Figure S7: The (16,13) active space used in the torsion scan at $R_{S-N} = 1.9$ Å and a C-S-N-O torsion angle of 60°. Reading from left to right and top to bottom, the first eight molecular orbitals are doubly occupied in the Hartree-Fock ground state whereas the final five molecular oarbitals are virtual.

Figure S8: The (16,13) active space used in the torsion scan at $R_{S-N} = 1.9$ Å and a C-S-N-O torsion angle of 90°. Reading from left to right and top to bottom, the first eight molecular orbitals are doubly occupied in the Hartree-Fock ground state whereas the final five molecular oarbitals are virtual.

Figure S9: The dominant molecular orbitals associated with the $S_0 \rightarrow S_1$, $S_0 \rightarrow S_2$, and $S_0 \rightarrow S_3$ transitions at the optimized geometry of the *syn* conformer along with the vertical excitation energies calculated at the (18,14) MCQDPT2/aug-cc-pVDZ level of theory.

Figure S10: The singly occupied molecular orbitals in the dominant electron configurations of the T_1 , T_2 , T_3 , and T_4 states at the optimized geometry of the *syn* conformer along with the vertical excitation energies calculated at the (18,14) MCQDPT2/aug-cc-pVDZ level of theory.

Figure S11: The singly occupied molecular orbitals in the dominant electron configurations of the S_0 , S_1 , S_2 , and S_3 states at the geometry with a 4.40 Å S-N bond length. The energies are reported relative to that of the S_0 state at the optimized geometry of the *syn* conformer.

Figure S12: The singly occupied molecular orbitals in the dominant electron configurations of the T_1 , T_2 , T_3 , and T_4 states at the geometry with a 4.40 Å S-N bond length. The energies are reported relative to that of the S_0 state at the optimized geometry of the *syn* conformer.

Figure S13: A zoomed in version of Figure 1 in the manuscript showing that at large S-N bond lengths, T_2 approaches the same dissociation limit as S_0 . The calculation was performed at the (18,14) MCQDPT2/aug-cc-pvdz level of theory with the lowest three singlet or triplet states of each irreducible representation of the C_s point group state averaged.

Figure S14: Reproduction of Figure 4 from the manuscript showing an unrelaxed scan along the C-S-N-O torsion angle at $R_{S-N} = 1.9$ Å. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory with state-averaging over the lowest four singlet or triplet states. All energies are reported relative to the lowest S₀ energy in this scan.

Figure S15: Results from an unrelaxed scan along the C-S-N-O torsion angle at $R_{S-N} = 2.0$ Å. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory with state-averaging over the lowest four singlet or triplet states. All energies are reported relative to the lowest S₀ energy in this scan.

Figure S16: Results from an unrelaxed scan along the C-S-N-O torsion angle at $R_{S-N} = 2.1$ Å. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory with state-averaging over the lowest four singlet or triplet states. All energies are reported relative to the lowest S₀ energy in this scan.

Figure S17: Results from an unrelaxed scan along the C-S-N-O torsion angle at $R_{S-N} = 2.2$ Å. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory with state-averaging over the lowest four singlet or triplet states. All energies are reported relative to the lowest S₀ energy in this scan.

Figure S18: Results from an unrelaxed scan along the C-S-N-O torsion angle at $R_{S-N} = 2.3$ Å. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory with state-averaging over the lowest four singlet or triplet states. All energies are reported relative to the lowest S₀ energy in this scan.

Figure S19: Results from an unrelaxed scan along the C-S-N-O torsion angle at $R_{S-N} = 2.5$ Å. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory with state-averaging over the lowest four singlet or triplet states. All energies are reported relative to the lowest S₀ energy in this scan.

 $R_{S-N} = 1.9$ Å

 $R_{S-N} = 1.9 \text{\AA}$

 $R_{S-N} = 2.1 \text{\AA}$

 $R_{S-N} = 2.1 \text{\AA}$

 $R_{S-N} = 2.2 \text{\AA}$

Figure S20: Plots of the singly occupied molecular orbitals of T_2 and T_3 at different values of R_{S-N} and a C-S-N-O torsion angle of 0°. Note that the electronic characters of the T_2 and T_3 adiabatic states switch between $R_{S-N} = 2.1$ Å and $R_{S-N} = 2.3$ Å.

Figure S21: Plots of the singly occupied molecular orbitals of T_2 and T_3 at different values of R_{S-N} and a C-S-N-O torsion angle of 90°. Note that the electronic characters of the T_2 and T_3 adiabatic states switch between $R_{S-N} = 2.1$ Å and $R_{S-N} = 2.3$ Å.

S-N Bond Length (Å)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	S ₃ (eV)
1.90	0.00	2.33	3.43	4.45
2.03	0.06	2.25	3.16	4.07
2.16	0.06	2.04	2.75	3.46
2.28	0.11	1.83	2.40	2.95
2.41	0.19	1.64	2.13	2.54
2.57	0.35	1.45	1.89	2.15
2.66	0.44	1.40	1.79	2.03
2.79	0.58	1.31	1.69	1.86
2.91	0.70	1.26	1.63	1.76
3.16	0.99	1.20	1.49	1.63
3.41	1.08	1.19	1.48	1.58
3.66	1.13	1.18	1.49	1.56
3.91	1.15	1.19	1.49	1.55
4.40	1.17	1.19	1.51	1.55

Table S1: Relative electronic energies of the singlet states from the relaxed scan along the S-N bond dissociation coordinate used to produce Figures 1 and S6. The calculation was performed at the (18,14) MCQDPT2/aug-cc-pvdz level of theory with the lowest three singlet states of each irreducible representation of the C_s point group state averaged.

S-N Bond Length (Å)	T ₁ (eV)	T ₂ (eV)	T ₃ (eV)	T ₄ (eV)
1.90	1.72	3.05	3.44	4.30
2.03	1.87	2.94	3.06	3.89
2.16	1.78	2.52	2.66	3.33
2.28	1.66	2.09	2.29	2.85
2.41	1.53	1.82	2.04	2.48
2.57	1.39	1.58	1.80	2.10
2.66	1.34	1.48	1.71	1.98
2.79	1.27	1.37	1.62	1.83
2.91	1.23	1.30	1.56	1.73
3.16	1.19	1.21	1.50	1.62
3.41	1.18	1.18	1.49	1.57
3.66	1.18	1.17	1.49	1.56
3.91	1.19	1.17	1.50	1.55
4.40	1.19	1.18	1.51	1.55

Table S2: Relative electronic energies of the triplet states from the relaxed scan along the S-N bond dissociation coordinate used to produce Figures 1 and S6. The calculation was performed at the (18,14) MCQDPT2/aug-cc-pvdz level of theory with the lowest three triplet states of each irreducible representation of the C_s point group state averaged.

Table S3: Transition dipole moment components (given in percent) of PhSNO calculated at the TD-DFT/6-311+G(d,p) level of theory.

Electronic State	‰ μ _a	% μ _b	% μ _c
\mathbf{S}_1	0	100	0
S_2	7	0	93
S_3	43	0	57

C-S-N-O Torsion Angle (°)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	T ₁ (eV)	T ₂ (eV)	T ₃ (eV)
0.0	0.00	2.37	3.46	1.82	3.01	3.33
7.5	0.08	2.41	3.50	1.81	3.09	3.44
15.0	0.10	2.40	3.47	1.80	3.08	3.46
22.5	0.14	2.38	3.44	1.78	3.06	3.49
30.0	0.19	2.35	3.39	1.70	3.05	3.44
45.0	0.31	2.31	3.27	1.67	3.00	3.54
60.0	0.45	2.30	3.16	1.64	2.96	3.66
75.0	0.55	2.30	3.09	1.64	2.96	3.73
82.5	0.59	2.32	3.08	1.64	2.96	3.75
90.0	0.60	2.33	3.08	1.65	2.97	3.75
97.5	0.59	2.34	3.10	1.65	2.99	3.74
105.0	0.56	2.35	3.13	1.66	3.01	3.71
120.0	0.47	2.37	3.23	1.68	3.05	3.62
135.0	0.36	2.38	3.35	1.69	3.09	3.52
150.0	0.25	2.39	3.45	1.70	3.11	3.43
165.0	0.18	2.39	3.52	1.70	3.12	3.38
180.0	0.18	2.35	3.52	1.70	3.12	3.37

Table S4: Relative electronic energies from the unrelaxed scan along the C-S-N-O torsion angle at $R_{SN} = 1.9$ Å used to produce Figures 4 and S7. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory. All energies are reported relative to the lowest S_0 energy in this scan.

C-S-N-O Torsion Angle (°)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	T ₁ (eV)	T ₂ (eV)	T3 (eV)
0.0	0.00	2.18	3.07	1.67	2.73	3.02
7.5	0.01	2.17	3.06	1.66	2.73	3.02
15.0	0.03	2.17	3.05	1.66	2.73	3.03
22.5	0.06	2.15	3.02	1.65	2.72	3.04
30.0	0.11	2.14	2.99	1.63	2.72	3.07
45.0	0.21	2.11	2.92	1.61	2.70	3.13
60.0	0.33	2.09	2.84	1.59	2.69	3.18
75.0	0.41	2.07	2.79	1.59	2.69	3.23
82.5	0.44	2.07	2.78	1.59	2.70	3.24
90.0	0.41	2.11	2.75	1.60	2.71	3.24
97.5	0.44	2.08	2.80	1.60	2.72	3.23
105.0	0.43	2.09	2.82	1.61	2.73	3.21
120.0	0.35	2.10	2.90	1.62	2.75	3.16
135.0	0.26	2.12	2.98	1.63	2.77	3.10
150.0	0.18	2.13	3.05	1.64	2.76	3.07
165.0	0.12	2.13	3.10	1.64	2.75	3.05
180.0	0.10	2.13	3.11	1.64	2.74	3.04

Table S5: Relative electronic energies from the unrelaxed scan along the C-S-N-O torsion angle at $R_{SN} = 2.0$ Å used to produce Figure S8. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory. All energies are reported relative to the lowest S_0 energy in this scan.

C-S-N-O Torsion Angle (°)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	T ₁ (eV)	T ₂ (eV)	T ₃ (eV)
0.0	0.00	1.97	2.69	1.63	2.40	2.63
7.5	0.01	1.97	2.70	1.62	2.41	2.68
15.0	0.03	1.96	2.69	1.61	2.41	2.69
22.5	0.06	1.96	2.68	1.60	2.41	2.70
30.0	0.09	1.95	2.65	1.60	2.40	2.71
45.0	0.19	1.93	2.60	1.58	2.40	2.74
60.0	0.28	1.91	2.55	1.57	2.42	2.75
75.0	0.35	1.90	2.51	1.56	2.45	2.75
82.5	0.38	1.90	2.51	1.56	2.46	2.75
90.0	0.38	1.90	2.51	1.57	2.47	2.75
97.5	0.38	1.90	2.52	1.57	2.47	2.75
105.0	0.37	1.91	2.54	1.58	2.44	2.78
120.0	0.31	1.92	2.59	1.59	2.43	2.78
135.0	0.24	1.93	2.66	1.59	2.45	2.73
150.0	0.17	1.94	2.71	1.60	2.46	2.70
165.0	0.12	1.94	2.74	1.60	2.46	2.68
180.0	0.10	1.94	2.75	1.60	2.45	2.67

Table S6: Relative electronic energies from the unrelaxed scan along the C-S-N-O torsion angle at $R_{SN} = 2.1$ Å used to produce Figure S9. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory. All energies are reported relative to the lowest S_0 energy in this scan.

C-S-N-O Torsion Angle (°)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	T ₁ (eV)	T ₂ (eV)	T ₃ (eV)
0.0	0.00	1.73	2.34	1.49	2.10	2.27
7.5	0.00	1.73	2.36	1.48	2.13	2.30
15.0	0.02	1.72	2.34	1.48	2.12	2.29
22.5	0.04	1.72	2.34	1.48	2.14	2.30
30.0	0.07	1.71	2.32	1.47	2.13	2.29
45.0	0.15	1.69	2.28	1.45	2.14	2.30
60.0	0.23	1.68	2.25	1.44	2.16	2.31
75.0	0.30	1.67	2.22	1.44	2.18	2.30
82.5	0.31	1.67	2.22	1.44	2.20	2.29
90.0	0.32	1.67	2.22	1.44	2.20	2.29
97.5	0.32	1.68	2.23	1.45	2.21	2.29
105.0	0.31	1.69	2.25	1.45	2.21	2.31
120.0	0.26	1.70	2.29	1.46	2.20	2.31
135.0	0.20	1.70	2.34	1.47	2.19	2.31
150.0	0.14	1.71	2.37	1.47	2.17	2.31
165.0	0.10	1.71	2.40	1.48	2.15	2.32
180.0	0.09	1.71	2.41	1.48	2.15	2.32

Table S7: Relative electronic energies from the unrelaxed scan along the C-S-N-O torsion angle at $R_{SN} = 2.2$ Å used to produce Figure S10. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory. All energies are reported relative to the lowest S_0 energy in this scan.

C-S-N-O Torsion Angle (°)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	T ₁ (eV)	T ₂ (eV)	T3 (eV)
0.0	0.00	1.47	2.02	1.30	1.79	1.94
7.5	0.00	1.47	2.02	1.30	1.80	1.95
15.0	0.01	1.47	2.01	1.30	1.81	1.95
22.5	0.03	1.47	2.01	1.30	1.81	1.95
30.0	0.06	1.46	2.00	1.29	1.82	1.94
45.0	0.13	1.45	1.98	1.28	1.84	1.94
60.0	0.20	1.44	1.95	1.27	1.86	1.94
75.0	0.25	1.44	1.94	1.27	1.88	1.93
82.5	0.26	1.44	1.94	1.27	1.89	1.93
90.0	0.27	1.44	1.94	1.27	1.89	1.93
97.5	0.27	1.44	1.95	1.27	1.89	1.94
105.0	0.26	1.44	1.96	1.28	1.88	1.95
120.0	0.23	1.45	1.98	1.28	1.86	1.96
135.0	0.18	1.45	2.01	1.29	1.84	1.97
150.0	0.13	1.46	2.04	1.30	1.82	1.98
165.0	0.10	1.46	2.06	1.30	1.81	1.99
180.0	0.08	1.46	2.06	1.30	1.80	1.99

Table S8: Relative electronic energies from the unrelaxed scan along the C-S-N-O torsion angle at $R_{SN} = 2.3$ Å used to produce Figure S11. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory. All energies are reported relative to the lowest S_0 energy in this scan.

C-S-N-O Torsion Angle (°)	S ₀ (eV)	S ₁ (eV)	S ₂ (eV)	T ₁ (eV)	T ₂ (eV)	T ₃ (eV)
0.0	0.01	1.01	1.46	0.92	1.20	1.42
7.5	0.00	1.01	1.46	0.92	1.20	1.42
15.0	0.01	1.01	1.46	0.92	1.21	1.42
22.5	0.02	1.01	1.45	0.92	1.21	1.42
30.0	0.04	1.01	1.45	0.91	1.21	1.42
45.0	0.09	1.00	1.44	0.91	1.22	1.42
60.0	0.14	1.00	1.44	0.90	1.23	1.43
75.0	0.18	0.99	1.43	0.90	1.24	1.43
82.5	0.19	0.99	1.43	0.90	1.24	1.43
90.0	0.19	0.99	1.44	0.90	1.24	1.43
97.5	0.19	0.99	1.44	0.90	1.24	1.44
105.0	0.19	1.00	1.44	0.91	1.24	1.44
120.0	0.17	1.00	1.46	0.91	1.23	1.45
135.0	0.13	1.00	1.47	0.92	1.22	1.45
150.0	0.10	1.01	1.48	0.92	1.22	1.45
165.0	0.08	1.01	1.49	0.92	1.21	1.46
180.0	0.07	1.01	1.49	0.92	1.21	1.46

Table S9: Relative electronic energies from the unrelaxed scan along the C-S-N-O torsion angle at $R_{SN} = 2.5$ Å used to produce Figure S12. The calculation was performed at the (16,13) MCQDPT2/aug-cc-pvdz level of theory. All energies are reported relative to the lowest S_0 energy in this scan.