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METHODOLOGY:
Optical Property Calculation

A. TDDFT Formulation

TDDFT aims at mapping the time-dependent Schrodinger equation onto an effective one-
electron problem, where time dependence is incorporated in the approximation of the exchange-
correlation kernel (xck) from the explicit time dependence of the exchange-correlation potential
and electron-density as:
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Calculation of optical absorption involves many-body purturbative approach of solution of Bethe
Saltpeter Equation (BSE) using the one-body Green’s function. In BSE, the dielectric function
can be written in terms of the xck as [1] :
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where v(q) 1s the bare Coulomb potential and y is the full response function, which is related to
the response function %° of the non-interacting Kohn-Sham system as:
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The frequency independent approximation for the xck, known as the Bootstrap kernel, is
computationally less exorbitant than a rigorous solution of the BSE:
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The coupled equations (2), (3) and (4) are solved by initially setting xc and then
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calculating X (W) and thus GG ( ). This value is then utilized in equation (6) to find out the

TDDFT
new f ke . This procedure is repeated until self-consistency is obtained at ® = 0.



The long-range component of exchange-correlation kernel is frequency independent having the
form -gfic / g2, More detailed and accurate formulation involves introducing frequency
dependence. The long-range contribution kernel (LRC) assimilates the frequency dependence in
the following form into the dynamical exchange:
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This improvement of dynamical kernel has improved the calculations to obtained important
information about the exciton and charged excitons[2].

B. Interband and intraband contribution to the dielectric response function

The real and imaginary parts of the interband dielectric response function in tensor form are
computed as[3]:
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For semiconductors and insulators, only interband transitions are important ("t ¥ ™). For metals,
due to the occurrence of partially occupied bands, transitions within a band, often referred to as
intra-band transitions are also important. The real part of intra-band dielectric function,
dependent only on frequency of the incident light and the energy dispersion, can be written as:
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where “af is the material specific property, referred to as the plasma frequency tensor,
represented as:
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The imaginary part is obtained from the Kramers-Kronig transformation:
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After introducing the relaxation-time 7 under semiclassical approximation, the real and
imaginary part of the intraband dielectric function can be written as:
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Therefore, for metals, the intra-band dielectric function has a near-zero frequency negative and
positive divergence respectively for real and imaginary parts, which constitutes the “Drude-like”
terms.

Transmission coefficients calculation

I'-point centred interpolated transmission coefficients at zero bias perpendicular to the transport
axis within the irreducible Brillouin zone (IBZ) are obtained for both the device geometries by

using:
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where, 91 is the retarded Green’s function, I'Lr is the level broadening with respect to the
corresponding self-energies of the electrodes. This function, while integrated over the k-point

mesh in the IBZ, results the transmission coefficient.
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Scheme S1 (a) A model device configuration having two electrodes, electrode extension and a
central region, (b) model Au-channel Ag contact system.

Table S1: Bader Charge table of different systems

Au/Ag-111 378 383.46 168.78 214.68

Embedded ______

Ag-doped Au BRBRRL 3607.74 376 371.54 3160 3236.20

System Total Charge
Bader
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Figure S1: Converged spin density plot for a) Aglll1, b) Aulll, c) Au/Au-111 and d) Embedded
system.
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Figure S2: Orbital Projected Density of States for a) Aglll, b) Aulll, c) contribution of Ag in
Au/Ag-111, d) contribution of Au in Au/Ag-111, e) contribution of Ag in embedded, f)
contribution of Au in embedded, g) contribution of Ag in Ag-doped Au and h) contribution of Au
in Ag-doped Au
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Figure 83: d-orbital Projected Density of States for a) contribution of Ag in Au/Ag-111, b)
contribution of Au in Au/Ag-111, c) contribution of Ag and d) contribution of Au in embedded
system, e) contribution of Ag and f) contribution of Au in doped system.

Pd-Pt system

For this combination, we have created large-area interfaces created from Pt[111] and Pd[111].
The doped nanostructure was formed by doping Pt[111] matrix centrally with some Pd atoms.
Both of these systems are having interesting optical properties. The epsilon-near-zero property,
energy-zero divergence and the negative value of real part of epsilon is present as can be seen
from Fig S5. Partially filled d-bands of both Pt and Pd generate flat-bands near Fermi-level.
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Figure S4: The orbital projected fatbands for orbital components of a) Pd in Pt/Pd-111 system,
b) Pt in Pt/Pd-111 system, c) Pd in Pd-doped Pt system and d) Pt in Pd-doped Pt system.
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Figure S5: Real and Imaginary part of dielectric constant of Pd-doped and Pd/Pt-111 system.
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