Supporting information: Simulations of valence excited states in coordination complexes reached through hard x-ray scattering

Erik Källman,[†] Meiyuan Guo,[†] Mickaël G. Delcey,[†] Roland Lindh,^{‡,¶} and Marcus Lundberg^{*,†}

†Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden

 ‡Department of Chemistry-BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala
¶Uppsala Center for Computational Chemistry (UC₃), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden

E-mail: marcus.lundberg@kemi.uu.se

Supporting Information Available

List of Figures

1	Isodensity representations of the seven orbitals in the RAS2 space. Orbital	
	pictures are from the ferrocyanide ground state.	5
2	Orbital diagram of metal hexacyanides using the O_h point group. Only or-	
	bitals in the t_{1u} and t_{2u} irreducible representations are included. Orbital	
	energies are not to scale.	5
3	Low-lying states of ferri- and manganicyanide complexes calculated with $RASPT_{2/2}$	RASSI.
	Energy diagrams are not to scale. Boltzmann populations of the spin-orbit	
	states at 298.15 K are shown after the relative energies	6
4	Selection rules for the valence RIXS process in ferrocyanide	6
5	Constant incident energy cuts through the 7113.0 eV pre-edge peak of ferro-	
	cyanide using MS-RASPT2 and different number of ungerade valence states	
	per irreducible representation.	6
6	Constant incident energy cuts through the 7113.0 eV pre-edge peak of ferro-	
	cyanide using MS-RASPT2. a) Different values of the IPEA shift. b) Different	
	values of the imaginary shift	7
7	Metal K pre-edge XAS spectra of ferricyanide from MS-RASPT2 calculations	
	with 60 core-excited states and different active spaces. Splittings between t_{2g}	
	and e_g peaks increase by 0.50 eV when going from 7 to 10 gerade valence	
	orbitals. All core-excited states are doublets. The labels for the different	
	transitions correspond to the valence-electron configurations in the d^6 Tanabe-	
	Sugano diagram as the exchange interactions with the 1s shell are small. $\ .$.	7

8	Metal K pre-edge XAS spectra of manganicyanide from MS-RASPT2 calcu-	
	lations using different number of core-excited states. Calculations have been	
	performed with the 10-orbital RAS2-B active space. All core-excited states	
	are triplets. The labels for the different transitions correspond to the main	
	valence-electron configuration in the d^5 Tanabe-Sugano diagram as the ex-	
	change interactions with the 1s shell are small	8
9	Metal K pre-edge XAS spectra of calculated using the second-order multipole	
	expansion and the exact semi-classical form of the wave vector for a) ferri-	
	cyanide and b) manganicyanide. Calculations have been performed with 60	
	core-excited states using the 7-orbital RAS2-A active space. \ldots . \ldots .	8
10	Metal K pre-edge RIXS spectra of ferricyanide from MS-RASPT2 calculations	
	with 0.6 eV experimental broadening in the energy transfer direction	9
11	Metal-centered d-d excitations in the K pre-edge RIXS spectra of mangani-	
	cyanide calculated using MS-RASPT2	9

List of Tables

1	Bond distances Å from RASPT2/ano-rcc-vtzp optimized geometries. Experi-	
	mental distances are shown in parenthesis. The Jahn-Teller distorted geome-	
	tries are D_{4h} . Other theoretical studies favor D_{3d} over D_{4h} . ^{1,2} As the distor-	
	tions are small the differences between these geometries should not affect the	
	spectral simulations. ³	10
2	Number of states in each irreducible representation for calculations of ligand-	
	to-metal charge-transfer spectra using 7 gerade valence orbitals in the active	
	space (RAS2-A).	10

3	Number of states in each irreducible representation for calculations of metal-	
	centered excitations using 10 gerade valence orbitals in the active space (RAS2- $$	
	B)	11
4	Incident energy shifts to align calculated spectra to first peak of the ex-	
	perimental K pre-edge spectra (7110.2 ev for $[Fe^{II}(CN)_6]^{4-}$, 7113.0 eV for	
	$[Fe^{III}(CN)_6]^{3-}$, and 6539.1 eV for $[Mn^{III}(CN)_6]^{3-}$).	11
5	Transition dipole moments for 1s transitions (T_{fi}) and orbital compositions for	
	the ground state of ferrocyanide calculated using $RASSCF/ANO-RCC-VTZP$.	
	Orbital analysis performed using the Stout-Politzer method implemented in	
	the MultiWfn program. ⁴ $\dots \dots \dots$	11

Figure 1: Isodensity representations of the seven orbitals in the RAS2 space. Orbital pictures are from the ferrocyanide ground state.

Figure 2: Orbital diagram of metal hexacyanides using the O_h point group. Only orbitals in the t_{1u} and t_{2u} irreducible representations are included. Orbital energies are not to scale.

Figure 3: Low-lying states of ferri- and manganicyanide complexes calculated with RASPT2/RASSI. Energy diagrams are not to scale. Boltzmann populations of the spin-orbit states at 298.15 K are shown after the relative energies.

Figure 4: Selection rules for the valence RIXS process in ferrocyanide.

Figure 5: Constant incident energy cuts through the 7113.0 eV pre-edge peak of ferrocyanide using MS-RASPT2 and different number of ungerade valence states per irreducible representation.

Figure 6: Constant incident energy cuts through the 7113.0 eV pre-edge peak of ferrocyanide using MS-RASPT2. a) Different values of the IPEA shift. b) Different values of the imaginary shift.

Figure 7: Metal K pre-edge XAS spectra of ferricyanide from MS-RASPT2 calculations with 60 core-excited states and different active spaces. Splittings between t_{2g} and e_g peaks increase by 0.50 eV when going from 7 to 10 gerade valence orbitals. All core-excited states are doublets. The labels for the different transitions correspond to the valence-electron configurations in the d^6 Tanabe-Sugano diagram as the exchange interactions with the 1s shell are small.

Figure 8: Metal K pre-edge XAS spectra of manganicyanide from MS-RASPT2 calculations using different number of core-excited states. Calculations have been performed with the 10orbital RAS2-B active space. All core-excited states are triplets. The labels for the different transitions correspond to the main valence-electron configuration in the d^5 Tanabe-Sugano diagram as the exchange interactions with the 1s shell are small.

Figure 9: Metal K pre-edge XAS spectra of calculated using the second-order multipole expansion and the exact semi-classical form of the wave vector for a) ferricyanide and b) manganicyanide. Calculations have been performed with 60 core-excited states using the 7-orbital RAS2-A active space.

Figure 10: Metal K pre-edge RIXS spectra of ferricyanide from MS-RASPT2 calculations with 0.6 eV experimental broadening in the energy transfer direction.

Figure 11: Metal-centered d-d excitations in the K pre-edge RIXS spectra of manganicyanide calculated using MS-RASPT2.

Table 1: Bond distances Å from RASPT2/ano-rcc-vtzp optimized geometries. Experimental distances are shown in parenthesis. The Jahn-Teller distorted geometries are D_{4h} . Other theoretical studies favor D_{3d} over D_{4h} .^{1,2} As the distortions are small the differences between these geometries should not affect the spectral simulations.³

Distance	Mn(III)	Fe(III)	$\mathrm{Fe}(\mathrm{II})$
M-C1 x 4	$1.992 \ (2.013)^5$	$1.942 (1.94)^6$	$1.918 (1.913)^7$
M-C2 x 2 $$	2.022(2.023)	1.921(1.94)	1.918(1.913)
C1-N1 x 4	1.186(1.161)	1.184(1.16)	1.196(1.161)
C2-N2 x 2 $$	1.183(1.156)	1.186(1.16)	1.196(1.161)

Table 2: Number of states in each irreducible representation for calculations of ligand-tometal charge-transfer spectra using 7 gerade valence orbitals in the active space (RAS2-A).

Calculation		Symmetry			
$[Fe^{II}(CN)_{6}^{]}4-$	a_g	$b_{(1,2,3)q}$	a_u	$b_{(1,2,3)u}$	
Initial	1	0	0	0	
Intermediate	2	0	0	0	
Final	0	0	2/6/10/20/40/60/100	2/6/10/20/40/60/100	
$[Fe^{III}(CN)_6^{]}3-$	a_g	$b_{(1,2,3)g}$	a_u	$b_{(1,2,3)u}$	
Initial	0	1	0	0	
Intermediate	60	60	0	0	
Final	0	0	100	100	
$[Mn^{III}(CN)_{6}^{]}3-$	a_g	$b_{(1,2,3)g}$	a_u	$b_{(1,2,3)u}$	
Initial	0	1	0	0	
Intermediate	60	60	0	0	
Final	0	0	100	100	

Calculation		Symmetry		
$[Fe^{III}(CN)_6]^{3-}$	a_g	$b_{(1,2,3)g}$	a_u	$b_{(1,2,3)u}$
Valence	60	60	0	0
Core excited	60	60	0	0
$[Mn^{III}(CN)_6]^{3-}$	a_g	$b_{(1,2,3)g}$	a_u	$b_{(1,2,3)u}$
Valence	10/20/40/60/80	10/20/40/60/80	0	0
Core excited	10/20/40/60/80	10/20/40/60/80	0	0

Table 3: Number of states in each irreducible representation for calculations of metal-centered excitations using 10 gerade valence orbitals in the active space (RAS2-B).

Table 4: Incident energy shifts to align calculated spectra to first peak of the experimental K pre-edge spectra (7110.2 ev for $[Fe^{II}(CN)_6]^{4-}$, 7113.0 eV for $[Fe^{III}(CN)_6]^{3-}$, and 6539.1 eV for $[Mn^{III}(CN)_6]^{3-}$).

	RAS2	Initial	Core excited	
Complex	orbitals	states	states	Shift (eV)
$[Fe^{II}(CN)_6]^{4-}$	7	1	2	-19.25
$[Fe^{III}(CN)_{6}]^{3-}$	7	1	60	-18.99
$[Fe^{III}(CN)_{6}]^{3-}$	10	60	60	-19.57
$[Mn^{III}(CN)_{6}]^{3-}$	7	1	60	-13.92
$[Mn^{III}(CN)_{6}]^{3-}$	10	10	10	-15.30
$[Mn^{III}(CN)_6]^{3-}$	10	20	20	-15.28
$[Mn^{III}(CN)_{6}]^{3-}$	10	40	40	-15.44
$[Mn^{III}(CN)_6]^{3-}$	10	60	60	-15.28
$[Mn^{III}(CN)_6]^{3-}$	10	80	80	-15.03

Table 5: Transition dipole moments for 1s transitions (T_{fi}) and orbital compositions for the ground state of ferrocyanide calculated using RASSCF/ANO-RCC-VTZP. Orbital analysis performed using the Stout-Politzer method implemented in the MultiWfn program.⁴

Basis	Orbital composition (%)					
function	T_{fi}	T_{fi}^2	$8t_{1u}$	$1t_{2u}$	$7t_{1u}$	$6t_{1u}$
2p	2.57 E-02	6.61E-04	0.002	0.000	0.003	0.002
3p	-7.45E-03	5.55E-05	0.793	0.000	1.482	0.943%
$4\mathrm{p}$	2.17E-03	4.71E-06	0.094	0.000	0.785	0.154%
$5\mathrm{p}$	-7.39E-03	5.45E-05	0.059	0.000	0.000	0.017
6р	5.78E-03	3.34E-05	0.031	0.000	0.000	0.012

References

- Atanasov, M.; Comba, P.; Daul, C. A.; Hauser, A. DFT-Based Studies on the Jahn-Teller Effect in 3d Hexacyanometalates with Orbitally Degenerate Ground States. J. Phys. Chem. A 2007, 111, 9145–9163.
- (2) Engel, N.; Bokarev, S. I.; Suljoti, E.; Garcia-Diez, R.; Lange, K. M.; Atak, K.; Golnak, R.; Kothe, A.; Dantz, M.; Kühn, O.; Aziz, E. F. Chemical bonding in aqueous ferrocyanide: experimental and theoretical X-ray spectroscopic study. J. Phys. Chem. B 2014, 118, 1555–1563.
- (3) Pinjari, R. V.; Delcey, M. G.; Guo, M.; Odelius, M.; Lundberg, M. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra. J. Comput. Chem. 2016, 37, 477–486.
- (4) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
- (5) Buschmann, W. E.; Liable-Sands, L.; Rheingold, A. L.; Miller, J. S. Structure and physical properties of hexacyanomanganate (III), [MnIII (CN) 6] 3-. *Inorganica Chim. Acta* 1999, 284, 175–179.
- (6) Hocking, R. K.; Wasinger, E. C.; de Groot, F. M.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. Fe L-edge XAS studies of K₄[Fe(CN)₆] and K₃[Fe(CN)₆]: A direct probe of back-bonding. J. Am. Chem. Soc. 2006, 128, 10442–10451.
- (7) Kuchar, J.; Černák, J.; Massa, W. Hydrate isomerism in [Cu(en)2(H2O)1.935]2[Fe(CN)6]·4H2O. Acta Crystallogr. C 2004, 60, m418–m420.