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Figure 1: Isodensity representations of the seven orbitals in the RAS2 space. Orbital pictures
are from the ferrocyanide ground state.

Figure 2: Orbital diagram of metal hexacyanides using the Oh point group. Only orbitals in
the t1u and t2u irreducible representations are included. Orbital energies are not to scale.
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Figure 3: Low-lying states of ferri- and manganicyanide complexes calculated with
RASPT2/RASSI. Energy diagrams are not to scale. Boltzmann populations of the spin-
orbit states at 298.15 K are shown after the relative energies.

Figure 4: Selection rules for the valence RIXS process in ferrocyanide.

Figure 5: Constant incident energy cuts through the 7113.0 eV pre-edge peak of ferrocyanide
using MS-RASPT2 and different number of ungerade valence states per irreducible repre-
sentation.

6



Figure 6: Constant incident energy cuts through the 7113.0 eV pre-edge peak of ferrocyanide
using MS-RASPT2. a) Different values of the IPEA shift. b) Different values of the imaginary
shift.

Figure 7: Metal K pre-edge XAS spectra of ferricyanide from MS-RASPT2 calculations
with 60 core-excited states and different active spaces. Splittings between t2g and eg peaks
increase by 0.50 eV when going from 7 to 10 gerade valence orbitals. All core-excited states
are doublets. The labels for the different transitions correspond to the valence-electron
configurations in the d6 Tanabe-Sugano diagram as the exchange interactions with the 1s
shell are small.
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Figure 8: Metal K pre-edge XAS spectra of manganicyanide from MS-RASPT2 calculations
using different number of core-excited states. Calculations have been performed with the 10-
orbital RAS2-B active space. All core-excited states are triplets. The labels for the different
transitions correspond to the main valence-electron configuration in the d5 Tanabe-Sugano
diagram as the exchange interactions with the 1s shell are small.

Figure 9: Metal K pre-edge XAS spectra of calculated using the second-order multipole
expansion and the exact semi-classical form of the wave vector for a) ferrricyanide and b)
manganicyanide. Calculations have been performed with 60 core-excited states using the
7-orbital RAS2-A active space.
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Figure 10: Metal K pre-edge RIXS spectra of ferricyanide from MS-RASPT2 calculations
with 0.6 eV experimental broadening in the energy transfer direction.

Figure 11: Metal-centered d-d excitations in the K pre-edge RIXS spectra of manganicyanide
calculated using MS-RASPT2.
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Table 1: Bond distances Å from RASPT2/ano-rcc-vtzp optimized geometries. Experimental
distances are shown in parenthesis. The Jahn-Teller distorted geometries are D4h. Other
theoretical studies favor D3d over D4h.1,2 As the distortions are small the differences between
these geometries should not affect the spectral simulations.3

Distance Mn(III) Fe(III) Fe(II)
M-C1 x 4 1.992 (2.013)5 1.942 (1.94)6 1.918 (1.913)7
M-C2 x 2 2.022 (2.023) 1.921 (1.94) 1.918 (1.913)
C1-N1 x 4 1.186 (1.161) 1.184 (1.16) 1.196 (1.161)
C2-N2 x 2 1.183 (1.156) 1.186 (1.16) 1.196 (1.161)

Table 2: Number of states in each irreducible representation for calculations of ligand-to-
metal charge-transfer spectra using 7 gerade valence orbitals in the active space (RAS2-A).

Calculation Symmetry
[FeII(CN)

]
64− ag b(1,2,3)g au b(1,2,3)u

Initial 1 0 0 0
Intermediate 2 0 0 0

Final 0 0 2/6/10/20/40/60/100 2/6/10/20/40/60/100
[FeIII(CN)

]
63− ag b(1,2,3)g au b(1,2,3)u

Initial 0 1 0 0
Intermediate 60 60 0 0

Final 0 0 100 100
[MnIII(CN)

]
63− ag b(1,2,3)g au b(1,2,3)u

Initial 0 1 0 0
Intermediate 60 60 0 0

Final 0 0 100 100
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Table 3: Number of states in each irreducible representation for calculations of metal-centered
excitations using 10 gerade valence orbitals in the active space (RAS2-B).

Calculation Symmetry
[FeIII(CN)6]

3− ag b(1,2,3)g au b(1,2,3)u
Valence 60 60 0 0

Core excited 60 60 0 0
[MnIII(CN)6]

3− ag b(1,2,3)g au b(1,2,3)u
Valence 10/20/40/60/80 10/20/40/60/80 0 0

Core excited 10/20/40/60/80 10/20/40/60/80 0 0

Table 4: Incident energy shifts to align calculated spectra to first peak of the experimental
K pre-edge spectra (7110.2 ev for [FeII(CN)6]4– , 7113.0 eV for [FeIII(CN)6]3– , and 6539.1 eV
for [MnIII(CN)6]3– ).

RAS2 Initial Core excited
Complex orbitals states states Shift (eV)
[FeII(CN)6]

4− 7 1 2 -19.25
[FeIII(CN)6]

3− 7 1 60 -18.99
[FeIII(CN)6]

3− 10 60 60 -19.57
[MnIII(CN)6]

3− 7 1 60 -13.92
[MnIII(CN)6]

3− 10 10 10 -15.30
[MnIII(CN)6]

3− 10 20 20 -15.28
[MnIII(CN)6]

3− 10 40 40 -15.44
[MnIII(CN)6]

3− 10 60 60 -15.28
[MnIII(CN)6]

3− 10 80 80 -15.03

Table 5: Transition dipole moments for 1s transitions (Tfi) and orbital compositions for the
ground state of ferrocyanide calculated using RASSCF/ANO-RCC-VTZP. Orbital analysis
performed using the Stout-Politzer method implemented in the MultiWfn program.4

Basis Orbital composition (%)
function Tfi T 2

fi 8t1u 1t2u 7t1u 6t1u
2p 2.57E-02 6.61E-04 0.002 0.000 0.003 0.002
3p -7.45E-03 5.55E-05 0.793 0.000 1.482 0.943%
4p 2.17E-03 4.71E-06 0.094 0.000 0.785 0.154%
5p -7.39E-03 5.45E-05 0.059 0.000 0.000 0.017
6p 5.78E-03 3.34E-05 0.031 0.000 0.000 0.012
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