Dissociative Chemisorption of O_2 on Ag_n and $Ag_{n-1}Ir$

(n=3-26) Clusters: A First-principle Study

Chuangchuang Wang¹, Yongpeng Yang¹, Xiaojing Liu¹, Yuanjie Li¹,

Dandan Song¹, Yun Tian¹, Zhaojun Zhang², Xiangjian Shen^{*1,2}

 ¹ Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China,
² State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China

* To whom correspondence should be addressed: xjshen85@zzu.edu.cn

Supporting Information

TableS1. The average Ag-Ag CN and average Ag-Ag bond length for Ag_n clusters.

TableS2. The average Ag-Ag CN and average Ag-Ag bond length for $Ag_{n-1}Ir$ clusters.

TableS3. The average Ag-Ir CN and average Ag-Ir bond length for $Ag_{n-1}Ir$ clusters.

TableS4. The E_b values for Ag_n and $Ag_{n-1}Ir$ clusters.

TableS5. The $\Delta_2 E$ and E^{mon} , E^{dim} , values for Ag_n and Ag_{n-1}Ir clusters.

 $\label{eq:constraint} \textbf{TableS6.} \ The \ E_{HOMO-LOMO} \ values \ for \ Ag_n \ and \ Ag_{n-1} Ir \ clusters.$

TableS7 The O_2 adsorption energy, the Bader charge of $O_2(Q_{O2})$, Ag (Q_{Ag}), the bond length of O-O bond for O_2 adsorption on Ag_n.

TableS8 The O₂ adsorption energy, the Bader charge of O₂ (Q_{O2}), Ag (Q_{Ag}), Ir (Q_{Ir}), the bond length of O-O bond for O₂ adsorption on $Ag_{n-1}Ir$

TableS9. The O_2 dissociation barriers and the O-O distance (b) of the transition states of O_2 adsorption on Ag_n and Ag_{n-1}Ir (n = 3–26) clusters.

TableS10. K and k (s⁻¹) are the equilibrium constant and O₂ direct dissociation rate constant,

respectively. θ_{O2} and θ^* are the coverages of O_2 and free sites of the clusters. r (molecules $\cdot s^{-1} \cdot site^{-1}$) for O_2 direct dissociation process at T=600 K and $P_{O2} = 3 \times 10^{-5} Pa$.

TableS11. K and k (s⁻¹) are the equilibrium constant and O₂ direct dissociation rate constant, respectively. θ_{O2} and θ^* are the coverages of O₂ and free sites of the clusters. r (molecules s⁻¹ · site⁻¹) stand for the reaction rate for O₂ direct dissociation process at T=600 K and P_{O2} =3×10⁻⁴Pa.

TableS12. The bond length, coordination numbers (CN), Emon, Edim, O2 adsorption energy (Eads) of

Ag₁₀, Ag₈Ir for PBE and TPSS functional.

Fig. S1 : Total densities of states of two typical clusters : Ag₆ and Ag₅Ir clusters.

Ag _n	2S+1	CN(Ag-Ag)	R(Ag-Ag)/Å	Ag _n	2S+1	CN(Ag-Ag)	R(Ag-Ag)/Å
Ag ₃	2	2.00	2.79	Ag ₁₅	2	5.73	2.85
Ag ₄	1	2.50	2.73	Ag ₁₆	1	6.00	2.87
Ag ₅	2	2.80	2.74	Ag ₁₇	2	5.29	2.82
Ag ₆	1	3.00	2.74	Ag ₁₈	1	6.33	2.86
Ag ₇	2	4.57	2.82	Ag ₁₉	2	6.32	2.87
Ag ₈	1	4.50	2.81	Ag ₂₀	1	6.30	2.86
Ag ₉	2	4.67	2.82	Ag_{21}	2	6.38	2.87
Ag ₁₀	1	4.80	2.83	Ag ₂₂	1	7.09	2.91
Ag ₁₁	2	5.45	2.85	Ag ₂₃	2	7.13	2.91
Ag ₁₂	1	5.67	2.85	Ag ₂₄	1	6.75	2.88
Ag ₁₃	2	5.85	2.86	Ag ₂₅	2	7.28	2.88
Ag ₁₄	1	6.00	2.87	Ag ₂₆	1	6.77	2.88

 $\label{eq:constraint} \textbf{TableS1.} \ The \ average \ Ag-Ag \ CN \ and \ average \ Ag-Ag \ bond \ length \ for \ Ag_n \ clusters.$

 $\label{eq:constraint} \textbf{TableS2.} \ The \ average \ Ag-Ag \ CN \ and \ average \ Ag-Ag \ bond \ length \ for \ Ag_{n-1}Ir \ clusters.$

Ag _{n-1} Ir	2S+1	CN(Ag-Ag)	R(Ag-Ag)/Å	Ag _{n-1} Ir	2S+1	CN(Ag-Ag)	R(Ag-Ag)/Å
Ag ₂ Ir	2	1.00	2.98	Ag ₁₄ Ir	2	5.14	2.89
Ag ₃ Ir	3	0.67	2.71	Ag ₁₅ Ir	1	5.3	2.90
Ag ₄ Ir	2	1.50	2.79	Ag ₁₆ Ir	2	5.63	2.90
Ag ₅ Ir	1	2.00	2.84	Ag ₁₇ Ir	1	5.76	2.90
Ag ₆ Ir	2	2.00	2.74	Ag ₁₈ Ir	2	6.00	2.91
Ag ₇ Ir	1	2.57	2.81	Ag ₁₉ Ir	1	6.00	2.91
Ag ₈ Ir	2	3.75	2.92	Ag ₂₀ Ir	2	6.40	2.92
Ag ₉ Ir	3	3.78	2.99	Ag ₂₁ Ir	1	6.48	2.92
Ag ₁₀ Ir	2	4.20	2.94	Ag ₂₂ Ir	2	6.55	2.91
Ag ₁₁ Ir	1	4.18	2.88	Ag ₂₃ Ir	1	6.61	2.92
Ag ₁₂ Ir	2	4.67	2.89	Ag ₂₄ Ir	2	6.50	2.91

Ag ₁₃ Ir	1	4.92	2.89	Ag ₂₅ Ir	1	6.32	2.89
TableS	3. The ave	erage Ag-Ir CN	and average Ag	Ir bond le	ngth for Ag _{n-1}	Ir clusters.	
	Ag _{n-1} Ir	CN(Ag-Ir)	R(Ag-Ir)/Å	Ag _{n-1} Ir	CN(Ag-Ir)	R(Ag-Ir)/Å	—
	Ag ₂ Ir	1.00	2.55	Ag ₁₄ Ir	0.79	2.75	_
	Ag ₃ Ir	1.00	2.62	Ag ₁₅ Ir	0.73	2.76	
	Ag ₄ Ir	1.00	2.64	Ag ₁₆ Ir	0.75	2.79	
	Ag ₅ Ir	1.00	2.63	Ag ₁₇ Ir	0.71	2.79	
	Ag ₆ Ir	1.00	2.69	Ag ₁₈ Ir	0.67	2.78	
	Ag ₇ Ir	1.00	2.68	Ag ₁₉ Ir	0.63	2.78	
	Ag ₈ Ir	1.00	2.68	Ag ₂₀ Ir	0.6	2.77	
	Ag ₉ Ir	1.00	2.65	Ag ₂₁ Ir	0.52	2.79	
	Ag ₁₀ Ir	1.00	2.70	Ag ₂₂ Ir	0.55	2.78	
	Ag ₁₁ Ir	0.91	2.72	Ag ₂₃ Ir	0.48	2.79	
	Ag ₁₂ Ir	0.92	2.75	Ag ₂₄ Ir	0.5	2.78	
	Ag ₁₃ Ir	0.85	2.75	Ag ₂₅ Ir	0.48	2.79	

 $\label{eq:constraint} \textbf{TableS4.} \ The \ E_b \ values \ for \ Ag_n \ and \ Ag_{n-1} Ir \ clusters.$

Ag _n	E _b (eV)	Ag _{n-1} Ir	E _b (eV)	Ag _n	E _b (eV)	Ag _{n-1} Ir	E _b (eV)
Ag ₃	0.89	Ag ₂ Ir	1.54	Ag ₁₅	1.71	Ag ₁₄ Ir	2.05
Ag ₄	1.17	Ag ₃ Ir	1.62	Ag ₁₆	1.74	Ag ₁₅ Ir	2.06
Ag ₅	1.27	Ag ₄ Ir	1.75	Ag ₁₇	1.76	Ag ₁₆ Ir	2.06
Ag ₆	1.44	Ag ₅ Ir	1.80	Ag ₁₈	1.80	Ag ₁₇ Ir	2.07
Ag ₇	1.46	Ag ₆ Ir	1.95	Ag ₁₉	1.81	Ag ₁₈ Ir	2.06
Ag ₈	1.56	Ag ₇ Ir	1.98	Ag ₂₀	1.83	Ag ₁₉ Ir	2.07
Ag ₉	1.53	Ag ₈ Ir	2.04	Ag ₂₁	1.82	Ag ₂₀ Ir	2.08
Ag ₁₀	1.59	Ag ₉ Ir	2.09	Ag ₂₂	1.83	Ag ₂₁ Ir	2.09
Ag_{11}	1.60	Ag ₁₀ Ir	2.06	Ag ₂₃	1.83	Ag ₂₂ Ir	2.08
Ag_{12}	1.65	Ag ₁₁ Ir	2.06	Ag ₂₄	1.85	Ag ₂₃ Ir	2.08
Ag ₁₃	1.66	Ag ₁₂ Ir	2.04	Ag ₂₅	1.85	Ag ₂₄ Ir	2.07

Ag ₁₄	1.71	Ag ₁₃ Ir	2.05	Ag_{26}	1.87	Ag ₂₅ Ir	2.07
-							

	$\Delta_2 E(eV$	E _{Agl} mon(eV	EAg2 ^{dim} (eV	Ag _{n-}	$\Delta_2 E(eV$	E _{Ag1} ^{mon} (eV	EAg2 ^{dim} (eV	E _{Ir} ^{mon} (eV	E _{AgIr} dim(eV
Ag _n)))	1Ir)))))
Ag ₃	-1.14	0.86	0.86	Ag ₂ Ir	0.21	2.09	2.81	2.81	2.09
Ag ₄	0.31	2.00	1.06	Ag ₃ Ir	-0.38	1.88	2.16	3.83	1.91
Ag ₅	-0.60	1.69	1.89	Ag ₄ Ir	0.21	2.25	2.33	4.08	3.30
Ag ₆	0.68	2.28	2.17	Ag ₅ Ir	-0.85	2.04	2.50	4.44	3.34
Ag ₇	-0.66	1.60	2.08	Ag ₆ Ir	0.75	2.89	3.13	5.05	4.55
Ag ₈	0.93	2.26	2.05	Ag ₇ Ir	-0.39	2.14	3.23	5.58	4.40
Ag ₉	-0.57	1.32	1.78	Ag ₈ Ir	-0.07	2.53	2.87	5.86	5.33
Ag ₁	0.39	2.11	1.63	Ag ₉ Ir	0.94	2.60	3.33	7.14	5.68
Ag_1	-0.43	1.73	2.04	Ag ₁₀ Ir	-0.46	1.66	2.46	6.91	6.02
Ag ₁	0.32	2.15	2.08	Ag ₁₁ Ir	0.29	2.12	1.98	7.09	6.25
Ag ₁ 3	-0.52	1.84	2.19	Ag ₁₂ Ir	-0.36	1.83	2.15	6.76	6.14
Ag ₁	0.65	2.36	2.39	Ag ₁₃ Ir	0.22	2.19	2.21	7.15	6.17
Ag ₁	-0.46	1.71	2.26	Ag ₁₄ Ir	-0.20	1.97	2.33	6.72	6.33
Ag ₁ 6	0.10	2.17	2.07	Ag ₁₅ Ir	0.03	2.17	2.33	7.18	6.10
Ag ₁	-0.31	2.07	2.43	Ag ₁₆ Ir	-0.03	2.14	2.50	7.27	6.54
Ag ₁	0.37	2.38	2.65	Ag ₁₇ Ir	0.16	2.17	2.51	7.37	6.66

TableS5. The $\Delta_2 E$ and E^{mon} , E^{dim} , values for Ag_n and $Ag_{n-1}Ir$ clusters.

8									
Ag ₁ 9	-0.34	2.01	2.59	Ag ₁₈ Ir	-0.23	2.01	2.38	6.89	6.60
Ag_2	0.81	2.35	2.56	Ag ₁₉ Ir	0.04	2.24	2.45	7.12	6.35
Ag_2	-0.54	1.55	2.10	Ag ₂₀ Ir	-0.13	2.19	2.63	6.96	6.53
Ag ₂	0.27	2.09	1.83	Ag ₂₁ Ir	0.51	2.32	2.72	7.75	6.50
Ag ₂ 3	-0.37	1.82	2.11	Ag ₂₂ Ir	-0.31	1.81	2.34	7.45	6.79
Ag_2	0.27	2.19	2.21	Ag ₂₃ Ir	0.24	2.13	2.14	7.76	6.80
Ag ₂	-0.56	1.91	2.30	Ag ₂₄ Ir	-0.23	1.88	2.21	7.47	6.87
Ag ₂ 6		2.48	2.59	Ag ₂₅ Ir		2.11	2.19	7.74	6.80

 $\textbf{TableS6.} \ The \ E_{HOMO-LOMO} \ values \ for \ Ag_n \ and \ Ag_{n-1} Ir \ clusters.$

Ag _n	E _{HOMO-}	Ag _{n-}	E _{HOMO-}	Ag _n	E _{HOMO-}	Ag _{n-}	E _{HOMO-}
	_{LOMO} (eV)	1Ir	_{LOMO} (eV)		_{LOMO} (eV)	1Ir	_{LOMO} (eV)
Ag ₃	0.31	Ag ₂ Ir	0.31	Ag ₁	0.18	Ag ₁₄ Ir	0.20
				5			
Ag ₄	0.84	Ag ₃ Ir	0.01	Ag_1	0.68	Ag ₁₅ Ir	0.72
				6			
Ag ₅	0.38	Ag ₄ Ir	0.22	Ag_1	0.16	Ag ₁₆ Ir	0.32
				7			

Ag ₆	2.21	Ag ₅ Ir	0.28	Ag_1	0.76	Ag ₁₇ Ir	0.64
				8			
Ag ₇	0.34	Ag ₆ Ir	0.65	Ag_1	0.16	Ag ₁₈ Ir	0.22
				9			
Ag ₈	2.32	Ag ₇ Ir	0.75	Ag ₂	1.15	Ag ₁₉ Ir	0.66
				0			
Ag ₉	0.27	Ag ₈ Ir	0.69	Ag ₂	0.15	Ag ₂₀ Ir	0.22
				1			
Ag_1	1.11	Ag ₉ Ir	1.64	Ag ₂	0.53	Ag ₂₁ Ir	0.66
0				2			
Ag_1	0.21	Ag ₁₀ Ir	0.16	Ag_2	0.15	Ag ₂₂ Ir	0.19
1				3			
Ag_1	0.88	Ag ₁₁ Ir	0.85	Ag ₂	0.75	Ag ₂₃ Ir	0.91
2				4			
Ag_1	0.18	Ag ₁₂ Ir	0.15	Ag_2	0.13	Ag ₂₄ Ir	0.17
3				5			
Ag_1	1.11	Ag ₁₃ Ir	0.53	Ag ₂	0.82	Ag ₂₅ Ir	0.66
4				6			

TableS7 The O₂ adsorption energy, the Bader charge of O₂ (Q_{O2}), Ag (Q_{Ag}), the bond length of O-O bond for O₂ adsorption on Ag_n.

O_2/Ag_n	E _{ads} (eV)	Q ₀₂ (eV)	Q _{Ag} (eV)	R ₀₋₀ (Å)
O ₂ /Ag ₃	1.18	-0.53	0.53	1.33
O_2/Ag_4	0.43	-0.53	0.53	1.32
O_2/Ag_5	0.98	-0.61	0.61	1.34
O ₂ /Ag ₆	0.17	-0.21	0.21	1.25
O_2/Ag_7	0.78	-0.01	0.01	1.32
O_2/Ag_8	0.19	-0.20	0.20	1.26
O ₂ /Ag ₉	0.90	-0.58	0.58	1.34
O_2/Ag_{10}	0.57	0.01	-0.01	1.31

O_2/Ag_{11}	0.68	-0.37	0.37	1.34
O_2/Ag_{12}	0.45	-0.44	0.44	1.30
O_2/Ag_{13}	0.73	-0.58	0.58	1.33
O_2/Ag_{14}	0.05	0.07	-0.07	1.31
O_2/Ag_{15}	0.62	-0.52	0.52	1.32
O_2/Ag_{16}	0.32	-0.52	0.52	1.32
O_2/Ag_{17}	0.32	-0.06	0.06	1.33
O_2/Ag_{18}	0.18	-0.25	0.25	1.30
O_2/Ag_{19}	0.34	-0.56	0.56	1.33
O_2/Ag_{20}	0.11	-0.16	0.16	1.31
O_2/Ag_{21}	0.62	-0.55	0.55	1.32
O_2/Ag_{22}	0.42	-0.43	0.43	1.32
O ₂ /Ag ₂₃	0.71	-0.28	0.28	1.33
O_2/Ag_{24}	0.31	-0.52	0.52	1.31
O_2/Ag_{25}	0.58	-0.42	0.42	1.35
O_2/Ag_{26}	0.23	-0.48	0.48	1.30

TableS8 The O₂ adsorption energy, the Bader charge of O₂ (Q_{O2}), Ag (Q_{Ag}), Ir (Q_{Ir}), the bond length of O-O bond for O₂ adsorption on $Ag_{n-1}Ir$

lengen er e v		uusoiption on i	-Bil-1-1		
$O_2/Ag_{n-1}Ir$	E _{ads} (eV)	Q ₀₂ (eV)	Q _{Ag} (eV)	Q _{Ir} (eV)	R _{O-O} (Å)
O_2/Ag_2Ir	2.71	-0.59	0.17	0.42	1.39
O ₂ /Ag ₃ Ir	2.37	-0.49	0.19	0.30	1.29
O ₂ /Ag ₄ Ir	1.93	-0.60	0.32	0.28	1.37
O ₂ /Ag ₅ Ir	2.46	-0.53	0.28	0.25	1.29
O ₂ /Ag ₆ Ir	1.49	-0.54	0.33	0.21	1.32
O ₂ /Ag ₇ Ir	1.93	-0.65	0.45	0.20	1.36
O_2/Ag_8Ir	1.38	-0.66	0.53	0.13	1.37
O ₂ /Ag ₉ Ir	0.41	-0.82	0.66	0.16	1.42
$O_2/Ag_{10}Ir$	1.26	-0.59	0.79	-0.20	1.33
$O_2/Ag_{11}Ir$	0.56	-0.52	0.74	-0.22	1.32

$O_2/Ag_{12}Ir$	1.10	-0.01	0.32	-0.31	1.34
$O_2/Ag_{13}Ir$	0.71	-0.41	0.08	-0.49	1.34
$O_2/Ag_{14}Ir$	0.98	-1.04	1.14	-0.10	1.33
$O_2/Ag_{15}Ir$	0.43	-0.35	0.64	-0.29	1.33
$O_2/Ag_{16}Ir$	0.64	-0.57	0.79	-0.22	1.33
$O_2/Ag_{17}Ir$	0.47	-0.56	0.78	-0.22	1.32
$O_2/Ag_{18}Ir$	0.71	-0.65	0.86	-0.21	1.32
$O_2/Ag_{19}Ir$	0.45	-0.51	0.77	-0.26	1.33
$O_2/Ag_{20}Ir$	0.76	-0.60	0.85	-0.25	1.34
$O_2/Ag_{21}Ir$	0.39	-0.54	0.76	-0.22	1.28
$O_2/Ag_{22}Ir$	0.89	-0.57	0.83	-0.26	1.32
$O_2/Ag_{23}Ir$	0.41	-0.38	0.68	-0.30	1.31
$O_2/Ag_{24}Ir$	0.73	-0.68	0.92	-0.24	1.34
O ₂ /Ag ₂₅ Ir	0.34	0.04	0.31	-0.35	1.31

TableS9. The O_2 dissociation barriers and the O-O distance (b) of the transition states of O_2 adsorption on Ag_n and Ag_{n-1}Ir (n = 3–26) clusters.

Ag _n	Barrier(eV)	R(O-O) /Å	Ag _{n-1} Ir	Barrier(eV)	R(O-O) /Å
Ag ₃	2.41	2.39	Ag ₂ Ir	0.80	1.81
Ag_4	1.96	2.58	Ag ₃ Ir	0.89	1.88
Ag ₅	2.33	2.54	Ag ₄ Ir	0.56	1.88
Ag_6	2.35	2.31	Ag ₅ Ir	0.73	1.77
Ag_7	1.94	1.80	Ag ₆ Ir	0.58	2.03
Ag_8	2.09	2.24	Ag ₇ Ir	0.77	2.18
Ag ₉	1.59	2.04	Ag ₈ Ir	0.34	1.96
Ag_{10}	1.37	2.02	Ag ₉ Ir	0.53	1.77
Ag ₁₁	2.47	2.21	Ag ₁₀ Ir	2.00	2.49
Ag_{14}	1.42	1.91	Ag ₁₃ Ir	1.47	2.12
Ag ₁₈	1.42	1.89	Ag ₁₇ Ir	1.41	1.97
Ag ₁₉	1.71	1.97	Ag ₁₈ Ir	2.02	2.02
Ag ₂₀	1.54	1.85	Ag ₁₉ Ir	1.59	1.99
Ag ₂₅	1.81	1.98	Ag ₂₄ Ir	1.55	1.92
Ag ₂₆	1.49	1.96	Ag ₂₅ Ir	1.30	1.96

TableS10. K and k (s⁻¹) are the equilibrium constant and O₂ direct dissociation rate constant, respectively. θ_{O2} and θ^* are the coverages of O₂ and free sites of the clusters. r (molecules · s⁻¹ · site⁻¹) for O₂ direct dissociation process at T=600 K and P_{O2} =3×10⁻⁵Pa.

			Ag _n			
Clusters	К	k	θo_2	θ*	$\theta_{O_2} * \theta_*$	r
Ag ₃	4.0×10-6	1.5×10-7	1.2×10 ⁻¹⁰	1	1.2×10 ⁻¹⁰	1.8×10 ⁻¹⁷
Ag ₄	2.1×10 ⁻¹²	4.4×10-4	6.4×10 ⁻¹⁷	1	6.4×10 ⁻¹⁷	2.8×10 ⁻²⁰
Ag_5	8.5×10 ⁻⁸	3.4×10-7	2.6×10 ⁻¹²	1	2.6×10 ⁻¹²	8.8×10 ⁻¹⁹
Ag ₆	1.4×10 ⁻¹⁴	7.0×10 ⁻⁷	4.2×10 ⁻¹⁹	1	4.2×10 ⁻¹⁹	2.9×10 ⁻²⁵
Ag_7	1.8×10-9	7.6×10-4	5.4×10 ⁻¹⁴	1	5.4×10 ⁻¹⁴	4.1×10 ⁻¹⁷
Ag_8	2.1×10 ⁻¹⁴	9.9×10 ⁻⁵	6.2×10 ⁻¹⁹	1	6.2×10 ⁻¹⁹	6.2×10 ⁻²³
Ag ₉	1.8×10 ⁻⁸	3.4	5.5×10 ⁻¹³	1	5.5×10 ⁻¹³	1.9×10 ⁻¹²
Ag_{10}	3.1×10 ⁻¹¹	0.60	9.4×10 ⁻¹⁶	1	9.4×10 ⁻¹⁶	5.7×10 ⁻¹⁶
Ag ₁₁	2.6×10 ⁻¹⁰	3.8×10-9	7.9×10 ⁻¹⁵	1	7.9×10 ⁻¹⁵	3.0×10 ⁻²³
Ag_{14}	1.4×10 ⁻¹⁵	12	4.2×10 ⁻²⁰	1	4.2×10 ⁻²⁰	4.9×10 ⁻¹⁹
Ag ₁₈	1.7×10 ⁻¹⁴	29	5.1×10 ⁻¹⁹	1	5.1×10 ⁻¹⁹	1.7×10 ⁻¹⁴
Ag ₁₉	3.7×10 ⁻¹³	9.0×10 ⁻²	1.1×10 ⁻¹⁷	1	1.1×10 ⁻¹⁷	1.1×10 ⁻¹⁸
Ag ₂₀	4.4×10 ⁻¹⁵	1.5	1.3×10 ⁻¹⁹	1	1.3×10 ⁻¹⁹	2.0×10 ⁻¹⁹
Ag ₂₅	3.8×10 ⁻¹¹	2.0×10 ⁻²	1.1×10 ⁻¹⁵	1	1.1×10 ⁻¹⁵	2.3×10 ⁻¹⁷
Ag ₂₆	4.5×10 ⁻¹⁴	11	1.3×10 ⁻¹⁸	1	1.3×10 ⁻¹⁸	1.5×10 ⁻¹⁷
			Ag _{n-1} Ir			
Ag ₂ Ir	2.6×10 ⁷	3.5×10 ⁶	1.00	0.0013	0.013	4.4×10 ³
Ag ₃ Ir	3.7×10 ⁴	5.8×10 ⁵	0.52	0.47	0.24	1.4×10 ⁵
Ag ₄ Ir	7.7	4.0×10 ⁸	2.3×10-4	1	2.3×10-4	9.3×10 ⁴
Ag ₅ Ir	2.1×10 ⁵	1.4×10 ⁷	0.86	0.17	0.15	1.6×10 ⁶
Ag ₆ Ir	1.6×10 ⁻³	2.1×10 ⁸	4.8×10 ⁻⁸	1	4.8×10 ⁻⁸	10
Ag ₇ Ir	7.7	5.5×10 ⁶	2.3×10 ⁻⁴	1	2.3×10 ⁻⁴	1.3×10 ³
Ag ₈ Ir	1.9×10 ⁻⁴	3.6×10 ⁹	5.8×10-9	1	5.8×10-9	21
Ag ₉ Ir	1.5×10 ⁻¹²	7.0×10^{8}	4.4×10 ⁻¹⁷	1	4.4×10 ⁻¹⁷	3.1×10 ⁻⁸
Ag ₁₀ Ir	1.9×10 ⁻⁵	3.6×10 ⁻⁴	5.7×10 ⁻¹⁰	1	5.7×10 ⁻¹⁰	2.1 ×10 ⁻¹³
Ag ₁₃ Ir	4.7×10 ⁻¹⁰	7.0	1.4×10 ⁻¹⁴	1	1.4×10 ⁻¹⁴	9.9×10 ⁻¹⁴
Ag ₁₇ Ir	4.6×10 ⁻¹²	0.57	1.4×10 ⁻¹⁶	1	1.4×10 ⁻¹⁶	8.0×10 ⁻¹⁷

Ag ₁₈ Ir	4.7×10 ⁻¹⁰	7.6×10 ⁻⁵	1.4×10 ⁻¹⁴	1	1.4×10 ⁻¹⁴	1.1×10 ⁻¹⁸
Ag ₁₉ Ir	3.1×10 ⁻¹²	1.2	9.4×10 ⁻¹⁷	1	9.4×10 ⁻¹⁷	1.1×10 ⁻¹⁶
Ag ₂₄ Ir	6.9×10 ⁻¹⁰	1.9	2.1×10 ⁻¹⁴	1	2.1×10 ⁻¹⁴	3.9×10 ⁻¹⁴
Ag ₂₅ Ir	3.8×10 ⁻¹³	1.8×10^{2}	1.1×10 ⁻¹⁷	1	1.1×10 ⁻¹⁷	2.0×10 ⁻¹⁵

TableS11. K and k (s⁻¹) are the equilibrium constant and O₂ direct dissociation rate constant, respectively. θ_{O2} and θ^* are the coverages of O₂ and free sites of the clusters. r (molecules · s⁻¹ · site⁻¹) stand for the reaction rate for O₂ direct dissociation process at T=600 K and P_{O2} =3×10⁻⁴Pa.

			Ag _n			
Clusters	К	k	θ_{O_2}	θ*	$\theta_{O_2} * \theta_*$	r
Ag ₃	4.0×10-6	1.5×10-7	1.2×10-9	1	1.2×10-9	1.8×10 ⁻¹⁶
Ag ₄	2.1×10 ⁻¹²	4.4×10-4	6.4×10 ⁻¹⁶	1	6.4×10 ⁻¹⁶	2.8×10 ⁻¹⁹
Ag ₅	8.5×10-8	3.4×10-7	2.6×10-11	1	2.6×10-11	8.8×10 ⁻¹⁸
Ag ₆	1.4×10 ⁻¹⁴	7.0×10 ⁻⁷	4.2×10 ⁻¹⁸	1	4.2×10 ⁻¹⁸	2.9×10 ⁻²⁴
Ag ₇	1.8×10-9	7.6×10-4	5.4×10 ⁻¹³	1	5.4×10 ⁻¹³	4.1×10 ⁻¹⁶
Ag_8	2.1×10 ⁻¹⁴	9.9×10 ⁻⁵	6.2×10 ⁻¹⁸	1	6.2×10 ⁻¹⁸	6.2×10 ⁻²²
Ag ₉	1.8×10 ⁻⁸	3.4	5.5×10 ⁻¹²	1	5.5×10 ⁻¹²	1.9×10 ⁻¹¹
Ag_{10}	3.1×10 ⁻¹¹	0.60	9.4×10 ⁻¹⁵	1	9.4×10 ⁻¹⁵	5.7×10 ⁻¹⁵
Ag ₁₁	2.6×10 ⁻¹⁰	3.8×10-9	7.9×10 ⁻¹⁴	1	7.9×10 ⁻¹⁴	3.0×10 ⁻²²
Ag_{14}	1.4×10 ⁻¹⁵	12	4.2×10 ⁻¹⁹	1	4.2×10 ⁻¹⁹	4.9×10 ⁻¹⁸
Ag ₁₈	1.7×10 ⁻¹⁴	29	5.1×10 ⁻¹⁸	1	5.1×10 ⁻¹⁸	1.5×10 ⁻¹⁶
Ag ₁₉	3.7×10 ⁻¹³	9.0×10 ⁻²	1.1×10 ⁻¹⁶	1	1.1×10 ⁻¹⁶	1.1×10 ⁻¹⁷
Ag ₂₀	4.4×10 ⁻¹⁵	1.5	1.3×10 ⁻¹⁸	1	1.3×10 ⁻¹⁸	2.0×10 ⁻¹⁸
Ag ₂₅	3.8×10 ⁻¹¹	2.0×10 ⁻²	1.1×10 ⁻¹⁴	1	1.1×10 ⁻¹⁴	2.3×10 ⁻¹⁶
Ag ₂₆	4.5×10 ⁻¹⁴	11	1.3×10 ⁻¹⁷	1	1.3×10 ⁻¹⁷	1.5×10 ⁻¹⁶
			Ag _{n-1} Ir			
Ag ₂ Ir	2.6×10 ⁷	3.5×10 ⁶	1.00	0.00013	0.00013	4.4×10 ³
Ag ₃ Ir	3.7×10 ⁴	5.8×10 ⁵	0.92	0.082	0.076	1.4×10 ⁵
Ag ₄ Ir	7.7	4.0×10 ⁸	2.3×10-3	1	2.3×10-3	9.3×10 ⁴
Ag ₅ Ir	2.1×10 ⁵	1.4×10^{7}	0.98	0.016	0.015	1.6×10 ⁶
Ag ₆ Ir	1.6×10-3	2.1×10 ⁸	4.8×10 ⁻⁷	1	4.8×10-7	10
Ag ₇ Ir	7.7	5.5×10 ⁶	2.3×10 ⁻⁴	1	2.3×10 ⁻³	1.3 ×10 ³
Ag ₈ Ir	1.9×10 ⁻⁴	3.6×10 ⁹	5.8×10 ⁻⁸	1	5.8×10 ⁻⁸	21
Ag ₉ Ir	1.5×10 ⁻¹²	7.0×10 ⁸	4.4×10 ⁻¹⁶	1	4.4×10 ⁻¹⁶	3.1×10 ⁻⁸
Ag ₁₀ Ir	1.9×10 ⁻⁵	3.6×10 ⁻⁴	5.7×10 ⁻⁹	1	5.7×10-9	2.1 ×10 ⁻¹³
Ag ₁₃ Ir	4.7×10 ⁻¹⁰	7.0	1.4×10 ⁻¹³	1	1.4×10 ⁻¹³	9.9×10 ⁻¹⁴
Ag ₁₇ Ir	4.6×10 ⁻¹²	0.57	1.4×10 ⁻¹⁵	1	1.4×10 ⁻¹⁵	8.0×10 ⁻¹⁷
Ag ₁₈ Ir	4.7×10 ⁻¹⁰	7.6×10 ⁻⁵	1.4×10 ⁻¹³	1	1.4×10 ⁻¹³	1.1×10 ⁻¹⁸

Ag ₁₉ Ir	3.1×10 ⁻¹²	1.2	9.4×10 ⁻¹⁶	1	9.4×10 ⁻¹⁶	1.1×10 ⁻¹⁶
Ag ₂₄ Ir	6.9×10 ⁻¹⁰	1.9	2.1×10 ⁻¹³	1	2.1×10 ⁻¹³	3.9×10 ⁻¹⁴
Ag ₂₅ Ir	3.8×10 ⁻¹³	1.8×10 ²	1.1×10 ⁻¹⁶	1	1.1×10 ⁻¹⁶	2.0×10 ⁻¹⁵

TableS12. The bond length, coordination numbers (CN), E^{mon} , E^{dim} , O_2 adsorption energy (E_{ads}) of Ag₁₀, Ag₈Ir for PBE and TPSS functional.

Ag ₁₀	PBE	TPSS	Ag ₈ Ir	PBE	TPSS
R(Ag-Ag) /Å	2.83	2.77	R(Ag-Ag)/Å	2.92	2.85
-	-	-	R(Ag-Ir)/Å	2.68	2.65
CN(Ag-Ag)	4.80	4.80	CN(Ag-Ag)	3.75	3.75
-	-	-	CN(Ag-Ir)	1	1
Emon /(eV)	2.11	2.27	E ^{mon} /(eV)	2.53	2.83
Edim /(eV)	1.63	1.87	Edim/(eV)	2.87	3.22
E _{ads} /(eV)	0.57	0.38	E _{ads} /(eV)	1.38	1.45

Fig. S1 : Total densities of states of two typical clusters : Ag_6 (left) and Ag_5Ir (right)clusters.

