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S1. Adsorption isotherms

Nitrogen- and water adsorption isotherms of the hierarchical silica sample are shown in Fig. 

S1. The modeling of the N2 isotherms was performed employing the Derjaguin-Broekhoff-

deBoer 1,2 model, with the  parameters taken from (Ludescher et al. 2019). The micropore 

filling was described using the Langmuir isotherm 3. The water isotherm was modeled by 

making use of the fact that both, N2 (measured at 77.4 K) and water (measured at 290.15 K) 

access the same pore volume, thus allowing to estimate the unknown water-silica interaction 

from the known nitrogen-silica interaction and the given water adsorption isotherm 

(Ludescher et al. 2019). Notably, the two isotherms differ strongly in the film regime, with the 

amount adsorbed just before capillary condensation being a factor of two smaller for water 

as compared to nitrogen. Moreover, in contrast to nitrogen, there seems to be no pronounced 
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micropore filling at very low pressures. To visualize the difference in the filling characteristics, 

blue dashed lines in Fig. S1 which denote the specific micropore volume of 

 (see Table 1 of the main text). For water, the specific volume adsorbed 0.06 𝑐𝑚3(𝑙𝑖𝑞𝑢𝑖𝑑)/𝑔

of the micropores is reached at a relative pressure of , while the same volume is 𝑝/𝑝0~0.15

filled already at relative pressures .𝑝/𝑝0 < 0.01 𝑓𝑜𝑟 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 

 

Figure S1: Measured adsorption isotherms of water at 290.15 K (a) and nitrogen at 77.4 K (b) 

from the hierarchical silica sample calcined at 500°C. Filled symbols denote the adsorption- 

and open symbols the desorption branches. Modeling of the isotherms using DBdB theory is 

shown by the solid lines. Blue dashed lines signify the specific micropore volume determined 

with the t-plot method.



The film thicknesses as a function of relative pressure, used to model the isotherms in Fig. S1 

are shown in Fig. S2 for a mesopore radius of 3.3 nm. The film thickness at a given relative 

pressure is considerably smaller for water as compared to nitrogen, with monolayer coverage 

being reached only at the relative pressure of .𝑝/𝑝0 > 0.5

Figure S2: Film thickness of water at 290.15 K (full, black line) and nitrogen at 77.4 K (dashed 

red line) as a function of relative pressure. 

To determine the pore-size distribution (PSD) from the nitrogen adsorption isotherm, the 

change in the nitrogen specific surface energy was modelled using the Tolman equation, which 

leads to a so-called ‘improved-DBdB’ method4. This approach allows to determine PSD’s with 

an accuracy similar to NLDFT methods for MCM-414. Using a measured disjoining pressure 

isotherm5, a kernel with pore sizes ranging from  to , with a step-size of 𝑟 = 1.25 𝑛𝑚 𝑟 = 5 𝑛𝑚

, was calculated and fitted using a constraint on the local curvature of the PSD Δ𝑟 = 0.15 𝑛𝑚

to obtain a smooth PSD. Prior to fitting, the micropore contribution as a function of relative 

pressure was calculated  by Eq. S1 and subtracted using the appropriate values from Ludescher 

et al5. The PSD resulting from this procedure is shown in Fig. S3a. The mean pore size obtained 

this way is approximately , with standard deviation of , obtained from the fit 2.7 𝑛𝑚 0.25 𝑛𝑚

with a Gaussian (red line). The mean pore size used in the simulations of the apparent strains 

was determined from the two-step corona model from SAXS ( , see Table 1 in the main 3.2 𝑛𝑚

text), with the width ( ) estimated with the procedure described in section S4 𝜎 = 0. 3 𝑛𝑚

below. The mean pore size deduced from SAXS is larger by about 20% as compared to the 

value from nitrogen adsorption. However, the width of the distributions is very similar for the 

two different evaluations. 



Figure S3: a) Pore size distribution obtained from nitrogen adsorption (symbols) using the 

iDBdB. The red line is a fit of this PSD with a Gaussian. b) Fit (dashed, red line) of the measured 

nitrogen adsorption isotherm (symbols) with the iDBdB.

S2. SAXS from micropores

Instead of employing an empirical formfactor function for micropore scattering like in Ref. 6, 

we describe the micropores by a discrete normal distributed assembly of spherical pores with 

radius  and standard deviation  (Eq. 8, main paper). We assume a gradual filling of the 𝑟𝜇 𝜎𝜇

micropores with water using the Langmuir isotherm. 
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Since the interaction parameter  is obtained from the modeling of the adsorption isotherm 𝑏

(Fig. S1) 5, the micropore filling fraction is fully determined (Fig. S4 b) . Because we do not 

assume any correlation between the micropores, we simply add the scattering intensity from 

filled and empty micropores according to Eq. 9, main text. The mean size  and size 𝑟𝜇

distribution  of micropores (Table 2, main text) was determined by modeling the scattering 𝜎𝜇

pattern of the empty sample using Eq. 6 with the parameters given in Table 1 and Table 2. In 

Figure S3, the calculated scattering intensity resulting from macro-, meso-, and micropores is 

shown along with the experimental SAXS pattern at . The values obtained for the 𝑝/𝑝0 = 0

mean micropore diameter are  with variance . The model fits the 2𝑟𝜇 = 1.1 𝑛𝑚 𝜎𝜇 = 0.28 𝑛𝑚

experimental SAXS data quite well, except of the peak widths. The reason for this deviation is 

the limited experimental resolution, which was not taken into account in the model. 



Figure S4: SAXS profile of the empty sample (symbols), together with the modeling of the SAXS 

curve employing Model 2 (red line).  

S3. Derivation of Equation 12 (main manuscript)

To derive Eq. 12 we start from the integrated intensity of a three-phase system 7 for the 

microporous mesopore wall, which is up to a constant factor related to absolute intensity 

calibration:
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where the volume fractions  and electron densities  are denoted by their respective 𝜙𝑖 𝜌𝑖

subscripts, and  
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For the empty micropores ( ), and for the completely water filled 
𝜙𝑉𝑜𝑖𝑑 = 1 ‒ 𝜙𝑆𝑖𝑂2
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Thus Eq. S2 can be written
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which reduces to 
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Because the in-situ SAXS measurements were not scaled to absolute units, we use the ratio of 

the integrated intensities
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respectively) lead to Eq. 12 in the main text. When applying Eq. 12 to a restricted interval at 

large q-values, we assume that first the scattering at large q is dominated by micropores, and 

second that the intensity at a given q value is proportional to the integrated intensity. The 

latter is true, if the micropore filling does not change the shape of the corresponding SAXS 

profile, but only its pre-factor.

S4. Determining the input parameters for the simulation 

Following the procedures outlined in 8,9 the integrated peak intensities of the Bragg reflections 

from the ordered 2D hexagonal lattice were used to determine the model parameters in  Eq. 

2, main text. The Bragg peaks were fitted with a Pseudo-Voigt function after transformation 



of the measured intensity to a so-called Kratky-representation (   is plotted versus ). 𝐼(𝑞) 𝑞2 𝑞

This representation is advantageous because in it the peak-area is equivalent to the peaks 

integrated intensity

�̃� = 4𝜋∫𝐼(𝑞)𝑞2𝑑𝑞#(𝑆6)

 All fitting procedures were implemented in the method NonlinearModelFit in Mathematica. 

Here, the squared residual between the input data and a model function is minimized by a 

simplex method (Nelder-Mead algorithm, achieved by setting Method  ”NMinimize” in 

‘NonlinearModelFit). No additional precautions in fitting were needed, as the peak shapes 

were very well defined by Pseudo-Voigt functions and global minima are automatically sought 

by . For fitting Eq. 2 of the main text, individual weights were assigned to the "𝑁𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒"

integrated intensity of each peak. These were defined as the inverse square of the estimated 

standard deviation of the peaks integrated intensity ( , with the standard deviation  1/𝜎 2
ℎ𝑘 𝜎ℎ𝑘

determined from the fits of the peak ). Four Bragg peaks were clearly discernible, namely ℎ𝑘

the (10), (11), (20) and (21) peaks. The inner and outer radii  , , as well as the silica fraction 𝑅1 𝑅2

of the empty corona  in Eq. 2 were determined for the empty sample, i.e. for  𝛼 = 𝛼0
𝑝 𝑝0 = 0

and  (Table 1).  Then   and  were kept fixed, and  was determined from the 𝜒 = 0 𝑅1 𝑅2 𝛼(𝑝 𝑝0)

SAXS profiles for relative pressures up to  (see Fig. S4 a). Above this relative 
𝑝 𝑝0 = 0.65

pressure,   was set to the maximum possible value , i.e., 𝛼
𝛼𝑚𝑎𝑥 = 𝛼0 + (1 ‒ 𝛼0)

𝜌𝐻2𝑂

𝜌𝑆𝑖𝑂2
= 0.755

it was assumed that the whole mesopore space within the corona is filled with liquid like water 

above . The spontaneous filling of the mesopore space outside the corona was 
𝑝 𝑝0 = 0.65

taken into account in the relative pressure interval from the onset of capillary condensation (

) until the complete filling of all mesopores (at ) (see Fig. S1). The 
𝑝 𝑝0 = 0.58 𝑝/𝑝0~0.77

following expression was used to calculate the form factor

𝐹(𝑞) = (1 ‒ Υ𝑚(𝑝 𝑝0)) 𝐹1(𝑞, 𝛼,𝜒 = 0) + Υ𝑚(𝑝 𝑝0) 𝐹2(𝑞, 𝛼,𝜒 = 𝜌𝐻2𝑂 𝜌𝑆𝑖𝑂2),            #(𝑆7)

with  being the volume fraction of mesopores which have already experienced Υ𝑚(𝑝 𝑝0)
capillary condensation, and  and  being the form factors according to Eq. 2 below and 𝐹1 𝐹2



above capillary condensation, respectively. The mesopore filling fraction obtained from Υ𝑚 

the water adsorption isotherm (Fig. S1) is shown in Fig. S4 b), revealing that capillary 

condensation extends over a finite pressure range due to a diameter distribution of the 

mesopores. The mesopore size distribution was estimated in a similar way as described by 

Müter et al.10, resulting in a minimum radius of  at  and a maximum radius 2 𝑛𝑚 𝑝 𝑝0 = 0.58

of  at . Assuming a normal distribution of mesopore radii and interpreting 3.9 𝑛𝑚 𝑝 𝑝0 = 0.77

this interval to be of total width , the corresponding width of the mesopore size 6𝜎𝑚𝑒𝑠𝑜

distribution  is used as input for the simulation (Table 2, main manuscript). The 𝜎𝑚𝑒𝑠𝑜 = 0.3

width estimated using this procedure is in fair agreement with the width estimated from the 

PSD from nitrogen adsorption, which is  (Fig. S3).
𝜎𝑁2

= 0.25



Figure S5: (a): Relative corona density  as function of relative pressure; (b) fraction  of 𝛼 Υ𝑚

mesopores in which capillary condensation has occurred (black symbols) and filling fraction of 
micropores  (blue symbols) in. Associated form factor fits (black lines) of integrated peak Υ𝜇

intensities (red dots) for selected relative pressures are shown in c)-f).  

Two different models to determine the electron density distribution inside the mesopres were 
applied to fit the integrated peak intensities8: one where adsorption only occurs in the corona 
and one where corona filling and an additional liquid film is present. Here we only present the 
results from the corona model (Fig. S5), as the existence of a liquid film is not needed to 
satisfactorily fit the integrated intensities of the four discernible peaks. To illustrate the 

negligible effect of a liquid film, the - error of both, the ‘corona’ and the ‘corona + film’, 𝜒2

models are shown for relative pressures below capillary condensation in Figure S6. 
Throughout all fits the liquid film thickness was at values close to  and did not improve, but 0
rather worsen, the fit quality significantly (Fig. S6).



Figure S6: The - error is shown for two models (pure corona filling as squares, corona filling 𝜒2

+ liquid film as dots) used to fit the integrated peak intensities of the (10)-, (11)-, (20)- and the 
(21)-peaks.

S5. Correction for the Porod contribution in the simulations

The form factor for a cylindrical mesopore (Eq. 2) is derived under the assumption that the 

pore itself is embedded in an infinite silica substrate 8,11. This means that the strut simulated 

by employing the Debye-Equation (Eq. 5) is embedded in silica. Because the magnitude of 

surface scattering from the strut is given by the mean electron density between two separated 

phases 7, the simulation does not describe the actual surface scattering of a strut surrounded 

by void space, and needs therefore to be corrected. Since the phase fractions are known for 

all relative pressures, the Porod-scattering contribution can be analytically calculated 6: 

𝐼
𝑃𝑜𝑟𝑜𝑑 ∗ (𝑞) = (𝜌𝑆𝑖𝑂2(𝜙  

𝑚𝑒𝑠𝑜 ‒ 𝜙𝐻2𝑂( 𝑝
𝑝0

)) + 𝜙𝐻2𝑂( 𝑝
𝑝0

)(𝜌𝑆𝑖𝑂2
‒ 𝜌𝐻2𝑂))2

𝐴𝑔

𝑞4
 , #(𝑆8)   

This contribution is subtracted from the mesopore SAXS profiles calculated using the Debye 

formula (Eq. 5). The correct Porod-scattering calculated using Eq. 7 along with the micropore 

contribution according to Eq. 8 are then added to the simulated mesopore scattering.
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