Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supplementary Information

Computational Insights into the Strain Effect in Electrocatalytic Reduction of CO₂ to CO on Pd Surfaces

Hong Liu^{a,b,c}, Jian Liu^a and Bo Yang*,^a

^aSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

^bCAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, China *Email: <u>yangbo1@shanghaitech.edu.cn</u>

		Pd(111)		Pd(100)		Pd(110)		Pd(211)	
		a	b	a	b	a	b	а	b
-2%	СО	3.71	-2.83	1.57	-1.97	0.57	-1.83	0.65	-1.94
	СООН	4.01	-1.18	4.49	-1.87	1.77	-1.18	1.02	-0.91
-1%	CO	3.49	-2.79	1.53	-2.04	0.53	-1.81	0.72	-2.01
	СООН	3.86	-1.19	4.26	-1.85	1.57	-1.13	1.02	-0.92
1%	CO	3.00	-2.66	1.36	-2.00	0.44	-1.74	0.97	-2.20
	СООН	3.52	-1.19	3.79	-1.74	1.68	-1.18	1.26	-1.03
2%	СО	2.78	-2.60	1.27	-1.97	0.53	-1.79	0.99	-2.20
	СООН	3.30	-1.18	3.51	-1.67	1.17	-1.00	1.18	-1.00

Table S1. Slope (*a*) and intercept (*b*) of the linear relations fitted in Figure 1.

Table S2. Average net charge at C and O atom of the CO molecules on the surface of Pd(111), (100), (110) and (211) with varying strains.

	111		100		110		211	
	С	0	С	0	С	0	С	0
-2	0.859	-0.985	0.859	-0.974	0.919	-1.036	0.868	-1.026
-1	0.839	-0.983	0.844	-0.964	0.915	-1.044	0.863	-1.021
0	0.828	-0.963	0.886	-0.997	0.916	-1.035	0.868	-1.030
1	0.850	-0.989	0.889	-1.003	0.906	-1.038	0.868	-1.030
2	0.835	-0.973	0.848	-0.981	0.917	-1.040	0.865	-1.031
Average	0.842	-0.979	0.865	-0.984	0.915	-1.038	0.866	-1.028

Pd(111)	-2%		-1%		1%		2%	
	СООН	СО	СООН	СО	СООН	СО	СООН	СО
-0.6	0.551	0.904	0.576	0.946	0.625	0.990	0.649	0.990
-0.7	0.551	0.952	0.576	0.986	0.625	0.990	0.649	0.990
-0.8	0.551	0.987	0.576	0.990	0.625	0.990	0.649	0.990
-0.9	0.551	0.990	0.576	0.990	0.625	0.990	0.649	0.990
-1	0.551	0.990	0.576	0.990	0.625	0.990	0.649	0.990
-1.1	0.551	0.990	0.576	0.990	0.625	0.990	0.649	0.990
-1.2	0.551	0.990	0.576	0.990	0.625	0.990	0.649	0.990

Table S3. Steady-state coverage of CO (in ML) while assuming reaction R1 or R3 as the rate-determining step.

Pd(100)	-2%		-1%		1%		2%	
	СООН	CO	СООН	CO	СООН	CO	СООН	СО
-0.6	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990
-0.7	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990
-0.8	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990
-0.9	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990
-1	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990
-1.1	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990
-1.2	0.720	0.990	0.781	0.990	0.840	0.990	0.872	0.990

Pd(110	-2%		-1%		1%		2%	
)	СООН	CO	СООН	CO	СООН	CO	СООН	CO
-0.6	0.990	-0.600	0.990	0.990	0.990	0.990	0.990	0.990
-0.7	0.990	-0.700	0.990	0.990	0.990	0.990	0.990	0.990
-0.8	0.990	-0.800	0.990	0.990	0.990	0.990	0.990	0.990
-0.9	0.990	-0.900	0.990	0.990	0.990	0.990	0.990	0.990
-1	0.990	-1.000	0.990	0.990	0.990	0.990	0.990	0.990
-1.1	0.990	-1.100	0.990	0.990	0.990	0.990	0.990	0.990
-1.2	0.990	-1.200	0.990	0.990	0.990	0.990	0.990	0.990

Pd(211	-2%		-1%		1%		2%	
)	СООН	CO	СООН	CO	СООН	CO	СООН	CO
-0.6	0.990	-0.600	0.990	0.990	0.990	0.990	0.990	0.990
-0.7	0.990	-0.700	0.990	0.990	0.990	0.990	0.990	0.990
-0.8	0.990	-0.800	0.990	0.990	0.990	0.990	0.990	0.990
-0.9	0.990	-0.900	0.990	0.990	0.990	0.990	0.990	0.990
-1	0.990	-1.000	0.990	0.990	0.990	0.990	0.990	0.990
-1.1	0.990	-1.100	0.990	0.990	0.990	0.990	0.990	0.990
-1.2	0.990	-1.200	0.990	0.990	0.990	0.990	0.990	0.990

(b)	Pd(100)	-2	-1	+1	+2	
Î	0.25 ML					
со	0.50 ML					
	0.75 ML					
Ļ	1.00 ML					
Î	0.25 ML					
соон	0.50 ML					
	0.75 ML			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

Figure S1. Adsorption configurations of CO and COOH at different CO coverages on Pd(111), (100), (110) and (211) with varying strains.

Figure S2. The correlation between differential adsorption energy of CO* at the highest coverage and Coulomb interaction energies between CO* molecules when the lattice parameters are changed. The illustration is a schematic diagram of the Coulomb interaction between two neighboring CO* on the surface. The Coulomb interaction energies were calculated with the averaged net charge value for C and O on the same miller-index surface with different strains, the values of which are also listed in **Table S2**.