Role of divalent cation (Ba) substitution in Li⁺ ion conductor LiTi₂(PO₄)₃: Molecular dynamics study

Kartik Sau*a, Tamio Ikeshojia, and Supriya Royb

^aMathematics for Advanced Materials - Open Innovation Laboratory (MathAM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), c/o Advanced Institute of Material Research (AIMR), Tohoku University, Sendai 980-8577, Japan

Email: kartik.sau@gmail.com

^bInstitute of Physics, Academia Sinica, Taiwan

Fig. S1 Mean Square Displacement of Li⁺ ion for x, y, z component and total for x = 0.67 (left) and x = 0.83 (right) composition.

Fig. S2 Polyhedral model of $\text{LiTi}_2(\text{PO}_4)_3$ for super-cell consists of $4 \times 4 \times 1$ -unit cells. The TiO₆ octahedra is represented by cyan and PO₄ tetrahedra is represented by blue. The Li1-site is indicated by green ball. The purple box indicates the plane where Ba^{2+} is located for ordered cases in Li1-sites. The purple box will be filled one by one from top to bottom (indicated by red arrow) depending on the compositions. This order arrangement is different than Fig. 1 in term of Ba^{2+} filling order.