ESI for the

Kinetic Instability of the Sulfurous Acid in the Presence of Ammonia and Formic Acid

Subhasish Mallick, Amit Kumar, and Pradeep Kumar*

Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India

E-mail: pradeep.chy@mnit.ac.in

Contents
Table S1: Optimized geometries in cartesian coordinates and all normal mode frequencies calculated at the
MP2/aug-cc-pVTZ level of theory.
Table S2 : Bimolecular rate constant k_b in (cm ³ molecule ⁻¹ sec ⁻¹) of AM, FA, and WM catalyzed
channel within the temperature of 213-1000 K.
Table S3: Half life time in sec. for the catalyzed and uncatalyzed channel at room temperature.
Table S4 : Concentration of Ammonia, Formic acid and Water (in molecules cm^{-3}) within the temperature
range of 280-320 K.
Table S5 : Concentration of Ammonia, Formic acid and Water (in molecules cm^{-3}) at higher altitude.
Table S6: Absolute energies in Hartree for the AM, FA, and WM catalyzed species aw well as for the
uncatalyzed species optimized at MP2/aug-cc-pVTZ level of theory.
Table S7 : Product branching ratio (γ) of catalyzed channels at 1 atm pressure.
Table S8 : Product branching ratio (γ) of catalyzed channels at higher altitudes.
Table S9 : Product branching ratio (γ) of catalyzed channels at 298 K.
Figure S1 : Pressure dependence plot for the decomposition reaction of H_2SO_3 in the presence of
AM, FA, and WM at 298 K
Figure S2: Time evolution of the relative population of the product complex for AM and FA catalyzed
channels at 298 K.

compound	cartesian coordinate(Å)				frequency($\rm cm^{-1}$)		
	0	0.00000000	0.00000000	0.11818900	1627.7613	3824.7049	3950.6088
WM	H	0.00000000	0.75802500	-0.47275400			
	H	0.00000000	-0.75802500	-0.47275400			
	C	-0.13228100	0.40084000	0.00030400	625.8763	674.7693	1059.0209
	0	-1.13878300	-0.26223900	-0.00006900	1130.6399	1301.9831	1409.2658
FA	0	1.12070900	-0.09253500	-0.00001600	1793.2981	3123.9869	3741.6317
	H	-0.09681300	1.49274100	-0.00082200			
	H	1.03508700	-1.05959000	-0.00032000			
	N	0.00000000	0.00000000	0.11400700	1037.5716	1668.9373	1668.9373
	H	0.00000000	0.93809600	-0.26601700	3502.6045	3649.5724	3649.5724
AM	H	-0.81241500	-0.46904800	-0.26601700			
	H	0.81241500	-0.46904800	-0.26601700			
	S	0.00000000	0.00000000	0.37256200	493.2718	1099.0853	1305.3854
SO_2	0	0.00000000	-1.25968300	-0.37256200			
	0	0.00000000	1.25968300	-0.37256200			
	S	0.04054400	0.14574300	-0.42300500	237.6446	293.2820	396.8364
	0	0.38509500	1.34488900	0.32736000	460.7578	490.6683	735.9567
$H_2SO_3(cis-trans)$	0	0.98882000	-1.07344100	0.11868900	773.0322	1095.7975	1110.9230
	H	1.12703400	-0.92866300	1.07281600	1282.1183	3690.1026	3751.9048
	0	-1.38217100	-0.30970000	0.28784800			
	H	-1.70968200	-1.09720200	-0.17589900			
		0. 40.000 400	1 22222 122			10-0000	11 - 0000
	0	-0.43622400	1.22290400	0.69705700	50.0590	107.0022	117.3363
		0.18597000	-0.16582000	-1.28977900	199.0971	266.9910	316.5524
	H	1.08669300	-0.19682100	-0.78759800	403.1097	419.0865	458.2586
		-0.83465500	-1.23587000	0.59967400	552.7854	703.4687	895.9831
DC		-1.3013/100	-1.08469000	1.43639300	1073.0178	1112.3537	1140.3763
RC_{AM}		2.33452600	-0.08538800	0.24145700	1205.3523	1447.2222	1659.0768
		1.91541200	0.57775500	0.88762200	1072.7950	2597.8268	3476.7701
		3.22707600	0.28480300	-0.05998500	3010.3402	3047.7412	3/62./34/
	H	2.50679800	-0.94395500	0.75006500			
	5	-0.94330300	0.21193200	-0.24827000			
		0 71004900	0 19702000	1 22025000	011 6955	70 2195	104 0770
		0.71994200	-0.12(03000)	1.33925900	-211.0355	(U.3125 280 5071	194.0770
		0.30197200 1.49199100	-1.00399000	-0.91047900	200.0909	209.0971 462.0202	312.4990 505 4049
		-1.42132100	-1.07772000	-0.2391/300	407.4223	403.0392 626 7110	000.4948 975 E041
		-0.34803300	1.39304300	-0.01409800	005 2400	030.7119 1303 5649	010.0041
TC		-0.12910100	2.100/8800 0.25790500	0.10414700 0.21007100	1090.3482	1202.0048	1230.3947
		-2.00138000	-0.33789300	0.2199/100	1490.3101	1045 9714	2001.1190
	п п	-1.94310900	-0.49901200	1.22000400	1124.2108	1940.0714	3200.9703
		-2.90080100	-0.3/349/00	-0.10212000	3040.3073	JUJ9.478J	3100.2311
		-1.41010000	0.07039200	-0.03028300 0.10005900			
	6	1.00033900	0.00987100	-0.10909900			
1	1				1		

Table S1: Optimized geometries in Cartesian coordinates and normal mode frequencies of all species calculate at MP2/aug-cc-pVTZ level of theory

compound	car	tesian coordina	ate(Å)		frequency(cm^{-1})	
	0	1.68034300	0.28503000	1.00644200	21.8581	85.8251	93.4327
	0	0.33102400	-1.28240300	-0.39967900	118.5825	133.5760	180.2255
	Н	-1.84686800	-1.21221000	0.22504400	228.9191	247.5856	267.2352
	0	-0.85527900	1.57713800	-0.42233900	335.5906	504.6608	535.0421
	H	-0.82206000	2.28633700	0.22713600	858.0347	1116.5682	1120.6559
PC_{AM}	N	-2.57538200	-0.51371200	0.33554900	1303.2595	1653.7697	1671.7451
	H	-2.95555000	-0.62139300	1.26777700	1678.9387	3378.2487	3486.3360
	H	-3.31570600	-0.74578600	-0.31510300	3621.5648	3644.1521	3876.5851
	Н	-1.56134100	0.96567400	-0.10636900			
	S	1.20503200	-0.10717200	-0.32017000			
	S	-1.36682000	-0.05835500	-0.41748200	49.4258	72.1672	116.9188
	0	-2.72344700	0.10124000	0.08485200	163.9259	201.5166	220.7574
	0	-0.48958300	1.25606300	0.19625100	298.4966	407.8889	435.9692
	H	-0.88969600	1.46055400	1.06159600	497.2693	646.8333	680.7879
	0	-0.72892100	-1.20846200	0.51407700	774.5210	831.8415	923.0801
RC_{FA}	H	0.23517000	-1.27700700	0.28203000	1082.8242	1104.7576	1234.0329
	C	2.63298700	-0.16455600	-0.08500300	1254.7570	1311.8392	1392.6972
	0	1.90113400	-1.14007100	-0.08802600	1438.1958	1749.0529	3140.8476
	0	2.25772200	1.09557100	0.03295200	3294.3988	3401.3178	3686.8955
	H	3.71646300	-0.24443000	-0.18625400			
	H	1.27401400	1.14716000	0.11150100			
	a	1 20120000	0 10 40 900	0.40060000	000 7045	F1 0F07	79 4015
	5	-1.39128000	-0.19498200	-0.40062800	-982.7045	51.8597	73.4015
		-2.60355600	0.06459800	0.36581200	155.9665	253.8797	290.0760
		-0.41072500	1.38377900	-0.07200400	322.9341	429.0778	473.0979
	П	-0.82771400	1.13212400	0.73445300	518.8807	029.2857	077.2040
		-0.47880800	-1.14458000	0.37218700	(42.5058	919.6018	1079.0721
$1S_{FA}$	Н	0.73155900	-1.13502100	0.08288100	1105.7027	1267.4470	1284.5745
		2.48917800	-0.06492500	-0.00235300	1352.3748	1365.4610	1422.6975
		1.88236100	-1.16754100	-0.06789600	1474.4698	1509.9192	1643.2586
		1.98484200	1.09277800	0.09977200	1759.3168	3171.9352	3720.2478
	H	3.57645100	-0.10571300	-0.04042600			
	H	0.85220000	1.18499500	0.06475900			
	s	-1.78010800	-0.29528400	-0.22616900	25.1721	42.9948	86.4406
	$\tilde{0}$	-1.93232200	-0.35793700	1.22440800	102.7528	143.5735	162.9746
	l õ	-0 51844100	1 97481600	-0.33548000	172 7776	196 6905	222 9852
	н	-0.66830400	2 63707900	0.34669700	271 3032	407 2389	507 9122
		-0 60695400	-0.96626700	-0.80410500	662 7613	669 1936	849 7047
PCn	н	1 10080100	-1 1715/000	-0.23521200	1081 0706	1193 38/17	1919 50/9
$1 \cup FA$		2 60513500	-0.11853000	0.22021200	1301 8678	1370 6668	1428 6805
		2.0001000	-1.20877700	0.22412100	1651 4450	1765 8502	3128 0527
		2.04301000	-1.23077700	0.01100900	3501 0380	3611 3456	3879 3711
	н	3 65602100	-0 235/8/00	0.19734400	0001.0000	0011.0400	0019.0111
	н Ц	0.40002100	1 67882500	0.49134400			
	n	0.40098800	1.010000000	-0.19030200			

compound	cartesian coordinate(Å)			$frequency(cm^{-1})$			
	S	0.87251500	0.07193300	-0.37725900	62.3764	165.3698	183.3682
	0	0.11594100	1.33749400	-0.31260100	234.0332	265.8636	324.7838
	0	1.05238000	-0.39667300	1.21352300	409.3767	424.3108	536.1023
	Ĥ	1 50578800	0 33347600	1 66394300	617 7362	724 7685	858 0635
BCurv	0	-0 12117500	-1 11452900	-0 74738000	876 9386	1112 7089	11899473
	н	-1.01130700	-0.90441600	-0.34082700	1347 8156	1634 8266	317/ 3099
	H	-2 57452400	-0.90441000	1 17800000	3670 2138	3758 9520	3887 6727
		-2.51452400 2 31001500	0.01001500	0.25863800	3010.2130	5156.3520	3001.0121
	н	-2.31031300 1 77002000	0.81027400	0.23758200			
	11	-1.11002900	0.01321400	0.23758200			
	q	0 02213400	0 10400000	0.30566400	786 5688	64 0053	276 5646
		-0.32213400 1 28202400	-0.10490000	1 10060000	261.0450	454 2600	482 0446
		-1.28392400 0.26245100	1 20104400	0.52712000	512 4672	404.2090 524.6100	402.9440 610.7150
		0.30243100	1.29104400	-0.52712900	012.4072	034.0199	019.7150
ma	Н	-0.01089900	2.02431800	-0.01401300	658.6590	682.9187 1990 9777	946.8784
$1S_{WM}$		0.08621600	-1.22667300	-0.48139300	1062.5621	1230.2755	1402.5021
	H	1.26295800	-0.86490500	0.05290300	1447.9634	1669.6300	1718.1809
	H	1.45825300	0.67917800	0.04911800	2203.4031	3763.1397	3813.7178
	0	2.07325300	-0.17010600	0.34458900			
	H	2.13986600	-0.18091100	1.30920300			
		1 18400500	0.10.101000	0.0000=000	00.0045	F O 0 11 0	100 00=0
	S	-1.17402700	-0.10401200	-0.33007800	22.3347	79.0412	128.6276
	0	-1.67048000	0.25214100	0.99746800	141.3135	170.0553	185.7566
	0	0.89388200	1.62177500	-0.37019400	208.4819	234.6266	271.0908
	H	0.89851800	2.34254500	0.26683200	421.5895	453.3708	503.6001
PC_{WM}	0	-0.24464700	-1.23616500	-0.41974500	700.7430	1118.4307	1303.9794
	H	1.70428800	-1.16272900	0.17264700	1630.6824	1655.4142	3610.2006
	H	1.60214000	1.01818700	-0.07954400	3751.4088	3888.0210	3909.8747
	0	2.48066100	-0.59379900	0.27207500			
	H	2.90415400	-0.88541900	1.08447800			
							100 0 100
	S	-0.35210300	0.03742200	-0.41862000	-1589.0005	228.7607	430.9480
	0	-1.39039100	-0.54637100	0.41259400	489.6202	501.2786	662.7370
	0	0.33213900	1.26278500	0.24519300	817.0385	1016.8424	1239.4487
TS_{Uncat}	H	1.24898400	0.49930000	0.43381600	1292.3417	1932.6476	3747.8109
	0	1.36259900	-0.73877200	0.19491900			
	H	1.94989100	-0.91919100	-0.55753600			
		0.04400000	0.00000700	0.95505000	04 0511	00	105 4999
	S	0.64468900	0.00000700	-0.37725000	24.2711	89.7166	105.4362
	0	0.74995200	-1.25490900	0.36820800	129.2983	218.8321	244.6129
	0	-2.18438400	-0.00004500	-0.09376300	500.7708	1111.8266	1308.9823
PC_{Uncat}	H	-2.41907400	-0.76110700	0.44738300	1628.1927	3802.7181	3926.2607
	0	0.74978800	1.25495500	0.36818800			
	H	-2.41879900	0.76098300	0.44755200			
	C	0.000002	0 111060	0 499979	196 2709	220 0 7 00	409 2412
	a a		0.111009	-0.4303/0	120.3792	009.2128 404.6000	400.2412
		0.000123	1.3/4303	0.309988	442.2980	484.0238	(09.1334
$H_2SO_3(cis-cis)$		1.255834	-0.751948	0.155137	179.4566	1082.2596	1108.1792
		-1.255969	-0.751732	0.155140	1254.7515	3696.9858	3698.6878
	Н	-1.471241	-0.372119	1.026062			
	H	1.471396	-0.372074	1.025871			
	q	0 000088	0 140400	0 401265	176 774	9/0 1109	366 7985
		1.950949	-0 678570	-0.2001200	131 9504	249.1102 501 0829	739 1690
H _a SO _a (,)		1.200242	-0.010019	0.299020	401.2004 757 9915	1071 2886	1117 2029
112003(trans-trans)		-1.243173 1 550905	1 252501	-0.230000 0.330005	1301.4410	2761 2026	3767 7900
	н п	-1.000000 1 554461	-1.333301 1.340570 S5	0.0000000000000000000000000000000000000	1301.0223	J104.2930	5101.1290
		1.004401	-1.049079	0.331344			
1	L U -	-0.001990	1.410090	-0.201499	1		

	Å Temp (K)	\mathbf{K}_{eq}^{AM}	\mathbf{k}_{uni}^{AM}	\mathbf{k}_{b}^{AM}	\mathbf{K}_{eq}^{FA}	\mathbf{k}_{uni}^{FA}	\mathbf{k}_{b}^{FA}	\mathbf{K}_{eq}^{WM}	\mathbf{k}_{uni}^{WM}	\mathbf{k}_{b}^{WM}
	213	7.73×10^{-11}	$3.01{\times}10^3$	2.32×10^{-7}	7.16×10^{-16}	$4.47{\times}10^5$	3.20×10^{-10}	6.89×10^{-17}	$3.81{\times}10^{-2}$	$2.62{ imes}10^{-18}$
	216	$4.65{ imes}10^{-11}$	$3.94{ imes}10^3$	1.83×10^{-7}	4.88×10^{-16}	$5.28{\times}10^5$	2.58×10^{-10}	4.99×10^{-17}	$5.67{\times}10^{-2}$	$2.83{ imes}10^{-18}$
	219	$2.83{ imes}10^{-11}$	$5.11{ imes}10^3$	$1.45 { imes} 10^{-7}$	3.36×10^{-16}	$6.21{\times}10^5$	2.09×10^{-10}	3.65×10^{-17}	$8.36{ imes}10^{-2}$	$3.05{ imes}10^{-18}$
	224	1.28×10^{-11}	$7.77{ imes}10^3$	9.94×10^{-8}	1.85×10^{-16}	$8.11{\times}10^5$	1.50×10^{-10}	2.20×10^{-17}	$1.57{\times}10^{-1}$	3.45×10^{-18}
	235	$2.51{\times}10^{-12}$	$1.84{\times}10^4$	4.62×10^{-8}	5.44×10^{-17}	$1.42{\times}10^6$	7.74×10^{-11}	7.86×10^{-18}	5.73×10^{-1}	4.51×10^{-18}
	250	$3.45{ imes}10^{-13}$	$5.25{\times}10^4$	1.81×10^{-8}	1.23×10^{-17}	$2.90{\times}10^6$	3.56×10^{-11}	2.24×10^{-18}	2.84	$6.35{ imes}10^{-18}$
	259	$1.18{\times}10^{-13}$	$9.29{ imes}10^4$	$1.09 { imes} 10^{-8}$	$5.47{ imes}10^{-18}$	$4.33{\times}10^6$	$2.37{ imes}10^{-11}$	1.13×10^{-18}	6.81	7.71×10^{-18}
	265	$5.97{ imes}10^{-14}$	$1.33{\times}10^5$	$7.94{ imes}10^{-9}$	3.29×10^{-18}	$5.58{\times}10^6$	1.84×10^{-11}	7.38×10^{-19}	$1.18{ imes}10^1$	8.73×10^{-18}
	278	$1.52{ imes}10^{-14}$	$2.75{\times}10^5$	4.18×10^{-9}	1.19×10^{-18}	$9.41{\times}10^6$	1.12×10^{-11}	3.11×10^{-19}	$3.63{ imes}10^1$	1.13×10^{-17}
	280	$1.25{ imes}10^{-14}$	$3.05{\times}10^5$	3.81×10^{-9}	1.02×10^{-18}	$1.02{\times}10^7$	1.04×10^{-11}	2.75×10^{-19}	$4.27{\times}10^1$	1.17×10^{-17}
	290	4.83×10^{-15}	$5.05{\times}10^5$	2.44×10^{-9}	5.04×10^{-19}	$1.47{\times}10^7$	7.42×10^{-12}	1.51×10^{-19}	$9.34{ imes}10^1$	1.41×10^{-17}
	298	$2.37{ imes}10^{-15}$	$7.39{\times}10^5$	$1.75 { imes} 10^{-9}$	$2.96{ imes}10^{-19}$	$1.95{\times}10^7$	$5.78 imes 10^{-12}$	9.61×10^{-20}	$1.69{ imes}10^2$	1.62×10^{-17}
	300	$1.99{ imes}10^{-15}$	$8.10{\times}10^5$	1.61×10^{-9}	2.61×10^{-19}	$2.09{\times}10^7$	$5.45 imes 10^{-12}$	8.63×10^{-20}	$1.94{ imes}10^2$	$1.68{ imes}10^{-17}$
	310	$8.72{ imes}10^{-16}$	$1.26{\times}10^6$	$1.10{\times}10^{-9}$	1.41×10^{-19}	$2.91{\times}10^7$	4.10×10^{-12}	5.12×10^{-20}	$3.86{\times}10^2$	$1.98{ imes}10^{-17}$
	320	4.02×10^{-16}	$1.90{\times}10^6$	7.64×10^{-10}	7.93×10^{-20}	$3.98{\times}10^7$	3.16×10^{-12}	3.15×10^{-20}	$7.36{\times}10^2$	2.32×10^{-17}
	330	$1.95{ imes}10^{-16}$	$2.80{\times}10^6$	5.45×10^{-10}	4.63×10^{-20}	$5.36{\times}10^7$	2.48×10^{-12}	2.00×10^{-20}	$1.35{ imes}10^3$	2.69×10^{-17}
	350	$5.19{ imes}10^{-17}$	$5.67{ imes}10^6$	$2.94{ imes}10^{-10}$	$1.74{ imes}10^{-20}$	$9.25{\times}10^7$	$1.61{\times}10^{-12}$	8.70×10^{-21}	$4.08{ imes}10^3$	$3.55{ imes}10^{-17}$
	375	$1.22{\times}10^{-17}$	$1.23{ imes}10^7$	1.51×10^{-10}	$5.97{ imes}10^{-21}$	$1.70{ imes}10^8$	1.02×10^{-12}	3.52×10^{-21}	$1.38{ imes}10^4$	4.86×10^{-17}
	400	$3.46{ imes}10^{-18}$	$2.43{\times}10^7$	8.42×10^{-11}	$2.37{ imes}10^{-21}$	$2.91{\times}10^8$	6.88×10^{-13}	1.60×10^{-21}	$4.02{ imes}10^4$	$6.44{ imes}10^{-17}$
	425	$1.15{ imes}10^{-18}$	$4.42{\times}10^7$	5.07×10^{-11}	1.05×10^{-21}	$4.70{\times}10^8$	4.94×10^{-13}	8.07×10^{-22}	$1.03{ imes}10^5$	8.31×10^{-17}
	500	$8.35{\times}10^{-20}$	$1.84{\times}10^8$	1.54×10^{-11}	1.56×10^{-22}	$1.50{\times}10^9$	2.34×10^{-13}	1.61×10^{-22}	$9.81{\times}10^5$	1.58×10^{-16}
	550	$2.22{ imes}10^{-20}$	$3.83{ imes}10^8$	$8.50 imes 10^{-12}$	5.99×10^{-23}	$2.74{\times}10^9$	1.64×10^{-13}	7.17×10^{-23}	$3.13{ imes}10^6$	$2.24{ imes}10^{-16}$
	600	$7.46{\times}10^{-21}$	$7.04{\times}10^8$	5.25×10^{-12}	$2.74{ imes}10^{-23}$	$4.56\!\times\!10^9$	1.25×10^{-13}	3.72×10^{-23}	$8.20{\times}10^6$	3.05×10^{-16}
	650	3.01×10^{-21}	$1.18{\times}10^9$	$3.55{ imes}10^{-12}$	1.44×10^{-23}	$7.04{\times}10^9$	1.01×10^{-13}	2.17×10^{-23}	$1.86{\times}10^7$	4.02×10^{-16}
	700	$1.40{ imes}10^{-21}$	$1.83{\times}10^9$	2.56×10^{-12}	8.39×10^{-24}	$1.03{\times}10^{10}$	8.60×10^{-14}	1.38×10^{-23}	$3.73{\times}10^7$	5.17×10^{-16}
	750	$7.31{\times}10^{-22}$	$2.67{\times}10^9$	1.95×10^{-12}	5.32×10^{-24}	1.42×10^{10}	7.57×10^{-14}	9.49×10^{-24}	$6.85{\times}10^7$	6.50×10^{-16}
	800	$4.18{\times}10^{-22}$	$3.73{ imes}10^9$	$1.56{ imes}10^{-12}$	3.61×10^{-24}	$1.90{\times}10^{10}$	$6.87{ imes}10^{-14}$	6.89×10^{-24}	$1.17{ imes}10^8$	8.03×10^{-16}
	850	$2.58{\times}10^{-22}$	$4.99{\times}10^9$	$1.29{ imes}10^{-12}$	$2.59{ imes}10^{-24}$	$2.47{\times}10^{10}$	6.38×10^{-14}	5.25×10^{-24}	$1.86{\times}10^8$	$9.79{ imes}10^{-16}$
	900	$1.69{\times}10^{-22}$	$6.48{\times}10^9$	1.10×10^{-12}	$1.94{ imes}10^{-24}$	$3.11{\times}10^{10}$	6.04×10^{-14}	4.16×10^{-24}	$2.84{\times}10^8$	1.18×10^{-15}
	950	$1.17{ imes}10^{-22}$	$8.17{\times}10^9$	9.57×10^{-13}	1.52×10^{-24}	$3.84{\times}10^{10}$	5.82×10^{-14}	3.40×10^{-24}	$4.13{\times}10^8$	1.41×10^{-15}
Į	1000	8.46×10^{-23}	1.01×10^{10}	8.53×10^{-13}	1.22×10^{-24}	4.65×10^{10}	5.68×10^{-14}	2.86×10^{-24}	$5.80{ imes}10^8$	$1.66{ imes}10^{-15}$

Table S2: Bimolecular rate constant k_b in (cm³ molecule⁻¹ sec⁻¹) of AM, FA, and WM catalyzed channel within the temperature of 213-1000 K.

Tomp (V)	AM catalyzed			FA catalyzed		WM catalyzed		Unest
Temp (K)	0.1ppbv	10pppv	2900ppbv	$0.01 \mathrm{ppbv}$	10ppbv	20%RH	100%RH	Uncat
280	2.18×10^{-1}	2.18×10^{-3}	7.50×10^{-6}	7.48×10^{5}	7.48×10^{2}	1.22	2.44×10^{-1}	5.70×10^{5}
290	2.76×10^{-1}	$2.76 imes 10^{-3}$	9.52×10^{-6}	7.25×10^5	$7.25{ imes}10^2$	4.95×10^{-1}	9.90×10^{-2}	$2.15{ imes}10^5$
298	3.77×10^{-1}	$3.77{ imes}10^{-3}$	1.30×10^{-5}	7.08×10^{5}	7.08×10^{2}	2.96×10^{-1}	5.93×10^{-2}	9.87×10^{4}
300	4.08×10^{-1}	4.08×10^{-3}	1.41×10^{-5}	7.03×10^{5}	7.03×10^{2}	2.33×10^{-1}	4.67×10^{-2}	8.12×10^{4}
310	4.77×10^{-1}	4.77×10^{-3}	1.65×10^{-5}	6.81×10^{5}	6.81×10^2	1.07×10^{-1}	2.13×10^{-2}	3.09×10^4
320	6.63×10^{-1}	6.63×10^{-3}	2.29×10^{-5}	6.59×10^{5}	$6.59{ imes}10^2$	5.82×10^{-2}	1.16×10^{-2}	1.19×10^{4}

Table S3: Half life time in sec. for the catalyzed and uncatalyzed channel at room temperature.

Tomp (K)	Ammonia			Formic acid		Water	
Temp (IX)	0.1ppv	10ppbv	2900ppbv	0.01ppbv	10ppbv	20%H	100%H
280	2.62×10^{9}	2.62×10^{11}	7.60×10^{13}	2.62×10^{8}	2.62×10^{11}	5.16×10^{16}	2.58×10^{17}
290	2.53×10^{9}	2.53×10^{11}	7.34×10^{13}	2.53×10^{8}	2.53×10^{11}	9.56×10^{16}	4.78×10^{17}
298	2.46×10^{9}	2.46×10^{11}	7.13×10^{13}	2.46×10^{8}	2.46×10^{11}	1.55×10^{17}	7.73×10^{17}
300	2.44×10^{9}	2.44×10^{11}	7.08×10^{13}	2.44×10^{8}	2.44×10^{11}	1.72×10^{17}	8.58×10^{17}
310	2.36×10^{9}	2.36×10^{11}	6.84×10^{13}	2.36×10^{8}	2.36×10^{11}	2.92×10^{17}	1.46×10^{18}
320	2.29×10^{9}	2.29×10^{11}	6.64×10^{13}	2.29×10^{8}	2.29×10^{11}	4.70×10^{17}	$2.35{ imes}10^{18}$

Table S4: Concentration of Ammonia, Formic acid and Water (in molecules $\rm cm^{-3})$ within the temperature range of 280-320 K

Table S5: Average concentration of Ammonia, Formic acid and Water (in molecules $\rm cm^{-3})$ at higher altitude.

Altitude (km)	Temp (K)	Ammonia	Formic acid	Water
15	213	1.20×10^{8}	3.20×10^{9}	2.00×10^{13}
10	230	8.50×10^8	8.30×10^{9}	4.90×10^{15}
5	259	7.60×10^{9}	2.00×10^{10}	2.40×10^{16}

Table S6: Absolute energies in Hartree for the AM, FA, and WM catalyzed species aw well as for the uncatalyzed species optimized at MP2/aug-cc-pVTZ level of theory.

Catalyst	Species	MP2/aug-cc-pVTZ	CCSD(T)/aug-cc-pVTZ	CCSD(T)/aug-cc-pVDZ	CCSD(T)/CBS
	cis-cis	-624.2865771	-624.3314174	-624.0543806	-624.4602388813
	cis-trans	-624.2852928	-624.3298599	-624.0527504	-624.4587371021
	trans-trans	-624.2788033	-624.3231526	-624.0457362	-624.4520617652
None	TS_{uncat}	-624.2437867	-624.2834554	-624.0093838	-624.4114112324
	PC_{uncat}	-624.3009192	-624.3404773	-624.0671367	-624.4684902367
	RC_{AM}	-680.7687116	-680.8326127	-680.499944	-680.9881799874
AM	TS_{AM}	-680.7603585	-680.8192494	-680.4892874	-680.9745445486
	PC_{AM}	-680.7785951	-680.837934	-680.5098007	-680.9924957142
	RC_{FA}	-813.7940338	-813.7940338	-813.4310599	-814.0765183028
FA	TS_{FA}	-813.7802465	-813.7802465	-813.4124196	-814.05851221
	PC_{FA}	-813.8072671	-813.8072671	-813.44302	-814.0846538875
	RC_{WM}	-700.6328388	-700.6909988	-700.3450377	-700.8537825188
WM	TS_{WM}	-700.6127721	-700.6658186	-700.3207028	-700.8281029186
	PC_{WM}	-700.6446555	-700.6977199	-700.3561171	-700.859440685

P (atm)	Temp (K)	AM catalyzed	FA catalyzed	WM catalyzed
	213	5.47×10^{-3}	8.95×10^{-1}	1.30×10^{-5}
	216	5.34×10^{-3}	9.16×10^{-1}	2.70×10^{-5}
	219	5.21×10^{-3}	9.16×10^{-1}	3.10×10^{-5}
	224	4.80×10^{-3}	9.25×10^{-1}	3.10×10^{-5}
	235	4.60×10^{-3}	9.44×10^{-1}	4.60×10^{-5}
	250	3.52×10^{-3}	9.56×10^{-1}	7.00×10^{-5}
	259	3.51×10^{-3}	9.58×10^{-1}	6.10×10^{-5}
1.0	265	2.99×10^{-3}	9.60×10^{-1}	9.60×10^{-5}
	278	2.92×10^{-3}	9.60×10^{-1}	1.09×10^{-4}
	280	2.55×10^{-3}	9.61×10^{-1}	1.08×10^{-4}
	290	2.33×10^{-3}	9.61×10^{-1}	1.39×10^{-4}
	298	1.92×10^{-3}	9.61×10^{-1}	1.40×10^{-4}
	300	1.83×10^{-3}	9.62×10^{-1}	1.59×10^{-4}
	310	1.81×10^{-3}	9.62×10^{-1}	1.98×10^{-4}
	320	1.50×10^{-3}	9.62×10^{-1}	2.18×10^{-4}

Table S7: Product branching ratio (γ) of catalyzed channels at 1 atm pressure.

Table S8: Product branching ratio (γ) of catalyzed channels at higher altitudes.

P (atm)	Temp (K)	AM catalyzed	FA catalyzed	WM catalyzed
0.12	213	3.81×10^{-3}	9.91×10^{-1}	3.00×10^{-5}
0.27	230	3.65×10^{-3}	9.80×10^{-1}	4.70×10^{-5}
0.54	259	2.89×10^{-3}	9.78×10^{-1}	8.60×10^{-5}

P (atm)	Temp (K)	AM catalyzed	FA catalyzed	WM catalyzed
0.10		1.12×10^{-3}	9.67×10^{-1}	1.70×10^{-4}
0.50		1.79×10^{-3}	9.69×10^{-1}	1.80×10^{-4}
1.0	298	1.92×10^{-3}	9.70×10^{-1}	1.50×10^{-4}
5.0		4.70×10^{-3}	9.72×10^{-1}	1.70×10^{-4}
10.0		5.23×10^{-3}	9.80×10^{-1}	1.70×10^{-4}

Table S9: Product branching ratio (γ) of catalyzed channels at 298K.

Figure S1: Pressure dependence plot for the decomposition reaction of H_2SO_3 in the presence of AM, FA, and WM at 298 K.

Figure S2: Time evolution of the relative population of the product complex for AM and FA catalyzed channels at 298 K.