Electronic Supplementary Information for

"Characterisation of the temperature-dependent M_1 to R phase

transition in W-doped VO₂ nanorod aggregates by Rietveld

refinement and theoretical modelling"

Lei Miao,^{a,b*} Ying Peng,^{a,c} Dianhui Wang,^a Jihui Liang,^a Chaohao Hu,^a Eiji Nishibori,^{d,e}

Lixian Sun,^a Craig A. J. Fisher,^f and Sakae Tanemura^{a,f*}

^a Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China

^bSchool of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China

^cDepartment of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

^dDivision of Physics, Faculty of Pure and Applied Science, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

^eStructural Materials Science Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Koto, Hyogo 679-5148, Japan

^fJapan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan

* Corresponding authors. Email addresses: miaolei@guet.edu.cn (L. Miao), fwhy047@nifty.com (S. Tanemura)

(a)

(b)

(d)

(f)

(c)

Fig. S1 (previous page) Low-magnification TEM images of the samples fabricated under the optimised synthesis conditions as explained in the main manuscript: (a) pure VO_2 ; (b) $V_{0.995}W_{0.005}O_2$; and (c) $V_{0.98}W_{0.02}O_2$, and (d) high-magnification TEM image of a nano-rod in (c). The sample was hold at a room temperature for those four. (e) HAADF STEM image showing columns of strong contrast corresponding to heavier W atoms (highlighted with red circles) in a nanorod shown as (c). The inset shows the SAED pattern corresponding to the M₁ phase taken down <011>. (f) Energy dispersive spectroscopy spectrum of the region shown in (e) confirming presence of W atoms. The sample was kept at 100 K.

(a)

Fig. S2 Lattice constant ratios $a'_M/a^T_R^{end}$, $b'_M/b^T_R^{end}$ and $c'_M/c^T_R^{end}$ for (a) pure VO₂, (b) V_{0.995}W_{0.005}O₂, and (c) V_{0.98}W_{0.02}O₂.

Fig. S3 (a) Crystal structure of M_1 -type VO₂ with the unit cell indicated by solid lines, and (b) a 2 × 3 × 2 supercell used in calculations of W-doped VO₂. Blue octahedra are centred on V atoms and the green octahedron on the W dopant atom.

Fig. S4 Calculated partial DOSs of R-type $V_{1-x}W_xO_2$ for (a) x = 0.0, (b) x = 0.0104, (c) x = 0.0208, and (d) x = 0.0416. DOSs per atom close to the Fermi level are shown as insets in c and d. The system remains metallic for all W contents examined.

Fig. S5 Schematic diagram of the relation between the various parameters used in the BWC Mott IMT model.

Table S1 Rietveld-refined structure parameters of R-type V_{0.98}W_{0.02}O₂ at 380 K in tetragonal space group $P4_2/mnm$ with lattice constants a = b = 4.56787 Å, c = 2.86787 Å, $\alpha = \beta = \gamma = 90^{\circ}$.

Site	Coordinates	Occupancy
V1	0.000, 0.000, 0.000	0.98334
W1	0.000, 0.000, 0.000	0.01666
V2	2.284, 2.284, 1.434	0.98334
W2	2.284, 2.284, 2.284	0.01666
01	1.361, 1.361, 0.000	1.00000
02	3.207, 3.207, 0.000	1.00000
03	0.923, 3.645, 1.434	1.00000
04	3.645, 0.923, 1.434	1.00000

		Composition			
Phase	Parameter	$VO_2 V_{0.995}W_{0.005}O_2 V_{0.98}W_{0.02}O_2$			
R	T_{end} (K)	355	340	250	
(tetragonal)	$a_{\rm R}$ (Å) (= $a_{\rm M} = a_{\rm M}'$)	4.553 ₁	4.556 ₆	4.562 ₂	
	$b_{\rm R}$ (Å) (= $b_{\rm M}$ = $b_{\rm M}'$)	4.553 ₁	4.556 ₆	4.562 ₂	
	$c_{\rm R}$ (Å) (= $c_{\rm M}$ = $c_{\rm M}$)	2.851 ₆	2.8542	2.86439	
	$V_{\rm R}$ (Å ³) (= $V_{\rm M} = V_{\rm M}'$)	59.11 ₅	59.26 ₁	59.61 ₈	
M_1	$T_{on}\left(\mathrm{K} ight)$	340	280	150	
(monoclinic)	$a_{\rm M}'(a_{\rm M})$ (Å)	4.851 ₁ (5.756 ₆)	4.8511 (5.7540)	4.864 ₂ (5.759 ₁)	
	$a_{\rm M}'^{-a} {\overset{ena}{R} \atop R} ({\rm \AA})$	0.2980	0.2944	0.3019	
	$\xi_{a}(T_{on})$ (%)	6.54	6.46	6.62	
	$b_{\rm M}' (= b_{\rm M}) ({\rm \AA})$	4.528 ₂ (4.5282)	4.530 ₈ (4.530 ₈)	4.5582 (4.5582)	
	$b_{\rm M}-b_{\rm R}^{ena}$ (Å)	-0.024_{9}	-0.025_{8}	-0.004_{0}	
	$\xi_{b}(T_{on})$ (%)	-0.55	-0.57	-0.09	
	$c_{\rm M}'(c_{\rm M})$ (Å)	2.2844 (5.3839)	2.288 ₈ (5.383 ₄)	2.2967 (5.3799)	
	$c_{\rm M}'^{-c} \stackrel{ena}{R} ({\rm \AA})$	-0.567_{1}	-0.565_{3}	-0.567_{2}	
	$\xi_{c}(T_{on})$ (%)	-19.89	-19.73	-19.80	
	$V_{\rm M}'$ (Å ³)	50.182	50.307	50.92 ₂	
	$V_{\rm M}'/V_{\rm R}^{ena}$	0.84887	0.84892	0.8542 ₈	
	$T_{-\infty}\left(\mathrm{K} ight)$	100	100	100	
	$a_{\rm M}'(a_{\rm M})({\rm \AA})$	4.8394 (5.7409)	$4.845_4 (5.746_1)$	4.864 ₈ (5.760 ₅)	
	$a_{\rm M}'^{-a} {}^{ena}_{R} ({\rm \AA})$	0.286318	0.288804	0.302588	
	$\xi_{a}(T_{-\infty})$ (%)	6.2883912	6.338077	6.63250	
	$b_{\rm M}'(b_{\rm M})({\rm \AA})$	4.5254 (4.5254)	4.5329 (4.5329)	4.5582 (4.5582)	
	$b_{\rm M}' - b_{R}^{enu}({\rm \AA})$	-0.02768	-0.02728	-0.00407	
	$\xi_{b}(T_{-\infty})$ (%)	-0.60793478	-0.59868	-0.0892	
	$c_{\rm M}'(c_{\rm M})({\rm \AA})$	$2.290_5 (5.378_8)$	2.292_0 (5.380 ₆)	2.2943 (5.3793)	
	$c_{\rm M} - c_{\rm R} R^{-\alpha} ({\rm \AA})$	-0.561085	-0.562244	-0.569559	
	$\xi_{\rm c}(T_{-\infty})$ (%)	-19.6762	-19.6987	-24.8246	
	$V_{\rm M}'(V_{\rm M})({\rm \AA}^3)$	50.162 (117.79)	50.307 (118.09)	50.87 ₆ (119.2 ₈)	
	$V_{\rm M}'/V_{R}^{enu}$	0.84866	0.84879	0.85350	

Table S2 Structural parameters for the monoclinic (M1) and tetragonal (R) phases ofundoped and W-doped VO2 nanorods at different temperatures.

Note: Values in parentheses are for the monoclinic coordinate system.

Table S3: Volumetric ratios $V_{\rm M}'/V_{\rm R}(T_{end})$ and the corresponding volumetric differentials, Ω , for nanorods with three different W dopant levels spanning the corresponding temperature ranges $T_{on} \le T \le T_{end}$: (a) pure VO₂, (b) V_{0.995}W_{0.005}O₂, and V_{0.98}W_{0.02}O₂.

VO ₂				
<i>T</i> (K)	$V_{\rm M}'/V_{\rm R}(T_{end})$	Ω (%)		
<i>T</i> _{on} 340	0.8489	-15.11		
<i>T</i> ₁ 345	0.9955	-0.4515		
T_2 350	0.9995	-0.0530		
T _{end} 355	1.00	0.00		

(a)

(b)

$V_{0.995}W_{0.005}O_2$				
<i>T</i> (K)	$V_{\rm M}'/V_{\rm R}(T_{end})$	Ω (%)		
<i>T</i> _{on} 280	0.8489	-15.10		
<i>T</i> ₁ 290	0.8494	-15.06		
T_2 300	0.8499	-15.0 ₁		
<i>T</i> ₃ 310	0.8526	-14.73		
<i>T</i> ₄ 320	0.8599	-14.01		
<i>T</i> ₅ 330	0.8712	-12.88		
T _{end} 340	1.00	0.00		

$V_{0.98}W_{0.02}O_2$				
<i>T</i> (K)	$V_{\rm M}'/V_{\rm R}(T_{end})$	$\Omega\left(\% ight)$		
<i>T</i> _{on} 150	0.8543	-14.57		
$\frac{T_I}{200}$	0.8573	-14.26		
$\begin{array}{c} T_2 \\ 210 \end{array}$	0.8579	-14.21		
T _{end} 250	1.00	0.00		

(c)

D. (Dopant content, x			
Parameter	0.0	0.0104	0.0208	0.0416
Upper Hubbard band width, $W(eV)$	2.345	2.489	2.650	2.828
Band splitting, U_{eff} (eV)	3.349	3.219	3.121	3.023
W/U_{eff}	0.700	0.758	0.849	0.935
Lower Hubbard band width, W_{low} (eV)	0.442	0.452	0.529	0.637
Charge-transfer energy, Δ (eV)	5.66	5.71	5.83	5.99
Band gap, E_{gap} (eV)	0.510	0.382	0.217	0.076

Table S4: Hubbard-band parameters for V-3d orbitals extracted from DOSs of the M1phase and used in the BWC-Mott IMT model.

Notes: U_{eff} is the difference between the weighted average energy of the lower Hubbard band and that of the upper Hubbard band; Δ is the gap between the bottom of the O 2p band and the bottom of the upper Hubbard band (conduction band minimum).

Dopant content. x	$T_{on}(\mathbf{K})$	W/U _{eff}	1-W/U _{eff}	Ω (%)	$(1-W/U_{eff})/\Omega$	$\Omega/(1-W/U_{eff})$
0.0	340	0.700	0.300	-0.1511	-1.9855	-0.2159
0.005	280	0 729	0 271	-01510	-1 7947	-0 2073
0.000		0.125	0.271	0.1010		0.2070
0.020	150	0.849	0.151	-0.1457	-1.0360	-0.9649

Table S5 Ratios between $1-W/U_{eff}$ and volumetric differential, Ω , for different W contents, *x*.

Note: $1-W/U_{eff}$ corresponds to the energy ratio from the apex of the hypothetical phase boundary between insulator and metal state in an f vs W/U_{eff} diagram.

Conventions and notation used in the analysis

(i) Lattice constants

The unit cell of the M₁ phase is monoclinic and can be described using the four lattice constants a_M , b_M , c_M and β (see Fig. S1), which we label collectively as Λ_M . The R phase is tetragonal and can be described using the three lattice constants a_R , b_R and c_R , where $a_R = b_R$, represented collectively by Λ_R To compare the M₁ and R phases directly, we also calculated orthogonalised lattice parameters for the M₁ phase, as shown in Fig. S1, denoted by a'_M , b'_M and c'_M , and collectively as Λ'_M . a'_M , b'_M , and c'_M are related to a_M , b_M , c_M and β according to $a'_M = a_M cos^{[M]}(\beta - 90)$, $b'_M = b_M$ and $c'_M = c_M - a_M sin^{[M]}(\beta - 90)$.

(ii) IMT temperatures

We used two different procedures to identify the onset temperature, T_{on} , for the IMT: (a) the temperature at which the R (220) peak first appeared on the shoulder of the M₁ (022) peak in the XRD pattern, and (b) the temperature at which a noticeable change in the gradients of plots of orthogonalised lattice parameters of the M₁ phase on was observed. The endset temperature, T_{end} , was defined as the temperature where $a_M' = b_M'$ (= $a_R = b_R$) and $\beta = 90^\circ$.

The conventional phase change temperature, T_c , was taken as the mean of the onset and endset temperatures of the IMT, i.e., $T_c = (T_{on} + T_{end})/2$. For temperature $T_{-\infty}$ we took the lowest temperature below T_{on} accessible with our equipment, *viz.*, 100 K. This temperature was

sufficiently low for thermal expansion effects on the lattice parameters of the M_1 phase to be ignored.

(iii) Axial ratios

Ratios between the lattice constants in each axial direction of the M₁ phase at a given temperature and the lattice constants of the R phase at T_{end} , $\xi(T)$, were calculated as

$$\xi_i(T) = \frac{\Delta \dot{i}_M(T)}{\dot{i}_R(T_{end})} \equiv \frac{\Delta \dot{i}_M(T)}{\dot{i}_M(T_{end})},$$
 (Eq. S1)

where i = a, b and c, and $\Delta i_M(T)$ is the difference in (orthogonal) lattice parameter *i* between the M₁ phase at temperature *T* and that of the R phase at T_{end} .

(iv) Volumetric differentials

The volumetric differential, Ω , was defined as the difference in unit-cell volumes of the M₁ phase (using an orthogonalised basis) at temperature *T*, $V_M'(T)$, and the R phase at the endset temperature, $V_R(T_{end})$, divided by $V_R(T_{end})$, i.e.,

$$\Omega(T) = \frac{V'_{M}(T) - V_{R}(T_{end})}{V_{R}(T_{end})} = \frac{V'_{M}(T)}{V_{R}(T_{end})} - 1$$
(Eq. S2)

The unit-cell volume ratio $V_M'(T)/V_R(T_{end})$ can be written as

$$\frac{V'_{M}(T)}{V_{R}(T_{end})} = \frac{\prod_{i=a}^{c} (i_{M}^{i}(T))}{\prod_{i=a}^{c} (i_{R}(T_{end}))} = \frac{a'_{M}(T)b'_{M}(T)c'_{M}(T)}{a_{R}(T_{end})b_{R}(T_{end})c_{R}(T_{end})}$$

$$(=\frac{a'_{M}(T)b'_{M}(T)c'_{M}(T)}{a_{R}(T_{end})b_{R}(T_{end})c_{R}(T_{end})})$$

$$=\frac{a'_{M}(T)}{a_{R}(T_{end})} \times \frac{b'_{M}(T)}{b_{R}(T_{end})} \times \frac{c'_{M}(T)}{c_{R}(T_{end})}$$

$$=L_{a}(T)L_{b}(T)L_{c}(T)$$

$$=\prod_{i=a}^{c} L_{i}(T)$$
(Eq. S3)

where L_i = is the ratio between the orthogonalised lattice constant of the M₁ phase and corresponding lattice constant of the R phase at T_{end} for each crystallographic axis *i*.

A negative Ω indicates that the M₁ phase is compressed relative to the R phase, whereas a positive Ω indicates that it is expanded.