Supporting Information

Monolayer PC₅/PC₆: Promising Anode Materials for Lithium-

Ion Batteries

Ke Fan^a, Yiran Ying^a, Xin Luo^{* b}, and Haitao Huang^{*a}

^aDepartment of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China

^bSchool of Physics, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China, 510275

AUTHOR INFORMATION

Corresponding Author

*E-mail: aphhuang@polyu.edu.hk (H.H.); luox77@mail.sysu.edu.cn (X.L.)

	PC ₂	PC ₅	PC ₆
a(Å)	3.96	4.39	6.69
<i>b</i> (Å)	5.27	7.86	6.69
Rc-c(Å)	1.40, 1.43	1.39, 1.43, 1.46	1.37, 1.42, 1.46
Rc-p(Å)	1.82	1.82	1.81
Rp-p(Å)	2.27	2.12	
α	86.89	88.87	90.00
β	91.70	94.31	90.00
γ	67.95	89.99	120.00

Table S1. Structural information (lattice constants, bong length, and bond angle) of PC_x systems.

2D elastic constant	DC	DC.	PC .
(N/m)	ΓC_2	rC ₅	ΓC_6
C ₁₁	216.26	226.07	212.61
C ₁₂	7.40	27.03	18.67
C ₂₂	23.96	212.80	212.48
C ₆₆	32.06	99.62	96.89

Table S2. Calculated 2D elastic constants for $\ensuremath{\text{PC}_{x}}\xspace$

We calculate the 2D elastic constants in the Voigt notation by multiplying the vacuum layer thickness with the 3D elastic constants obtained from the strain-stress relations (*ACS Nano*, **2015**, 9, 9885). Born criteria ($C_{11}C_{22}$ - C_{12}^2 >0, C_{66} >0) can be satisfied for all systems, indicating that all systems are mechanical stable.

Table S3. Bader charge transfer from the adsorbed Li atom to PC_x systems.

System	PC ₂	PC ₅	PC ₆
Charge transfer	0.89	0.89	0.91

Fig. S1 Convergence test results of total energy as a function of plane-wave cut-off energy for 2D PC_2 , PC_5 , and PC_6 .

Fig. S2 Convergence test results of total energy as a function of k-points mesh size for 2D (a) PC_2 , (b) PC_5 , and (c) PC_6 unit cell and (d) PC_2 , (e) PC_5 , and (f) $PC_6 2 \times 2 \times 1$ supercell.

Fig. S3 Total energy and temperature as a function of time (a) PC_2 , (b) PC_5 , and (c) PC_6 during the AIMD simulation (inset: the structure of after 12 ps AIMD simulation. P and C atoms are distinguished by orange and blue color, respectively).

Fig. S4 Schematic illustration of the crystallographic orientation direction along planes containing specified bonding atoms of PC_x system. The P atoms and C atoms are distinguished by orange and blue color, respectively.

 $\Delta E_1 = -0.93 eV$

 $\Delta E_2 = -0.87 eV$

 $\Delta E_3 = -0.43 eV$

 $\Delta E_1 = -0.83 eV$

 $\Delta E_2 = -0.67 eV$

 $\Delta E_3 = -0.57 eV$

Fig. S5 Geometric structure of possible adsorption sites on PC_2 , PC_5 , and PC_6 monolayer. The adsorption energy values for Li atom adsorbed on each site are listed below the corresponding figures. The Li, P, and C atoms are distinguished by green, orange, and blue color, respectively.

Fig. S6 (a) Schematic illustration of three possible paths for Li diffusion on the PC_2 and PC_6 monolayer based on the color-filled contour plots of adsorption energy of single Li atom on the surface; (b) Diffusion of single adatom over PC_2 and PC_6 monolayer through the more favorable pathways (path 1). (c) The corresponding diffusion barrier diagrams of Li– PC_2 and Li- PC_6 monolayer. Enlarged figures near the maximum energy along Path 1 are also shown. The Li, P, and C atoms are distinguished by green, orange, and blue color, respectively.

Fig. S7 Optimized structure of different numbers of Li-intercalated PC_2 monolayers ($P_8C_{16}Li$, $P_8C_{16}Li_2$, $P_8C_{16}Li_3$ and $P_8C_{16}Li_4$) from top and side view. The Li, P, and C atoms are distinguished by green, orange, and blue color, respectively.

Fig. S8 Optimized structures of different Li-intercalated PC₅ monolayer (2×2 supercell), including P₈C₄₀Li₃₂ (a) before and (b) after AIMD simulations, and P₈C₄₀Li₃₆ (c) before and (d) after AIMD simulations (300 K). The Li, P, and C atoms are distinguished by green, orange, and blue color, respectively.

Fig. S9 Optimized structures of different Li-intercalated PC_6 monolayers (2×2 supercell), including $P_8C_{48}Li_{36}$ (a) before and (b) after AIMD simulations, and $P_8C_{48}Li_{40}$ (c) before and (d) after AIMD simulations (300 K). The Li atoms, P atoms and C atoms are distinguished by green, orange, and blue color, respectively.

Fig. S10 Open-circuit voltage (OCV) as a function of adatom content y for PC_2 , PC_5 and PC_6 .