Electronic Supplementary Information for

Boosting the hole transport of conductive polymer by regulating the ion ratio in

ionic liquid additive

Wei-Lu Ding^a, Zhu-Zhu Sun^b, Xing-Liang Peng^c, Chen-Lu Wang^a, Ya-Qin Zhang^a,

Hong-Yan He*a, and Suo-Jiang Zhang*a

^a Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

^b Energy-Saving Building Materials Innovative Collaboration Center of Henan
Province, Xinyang Normal University, Xinyang, 464000, People's Republic of China
^c MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering,
Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Corresponding Author:

Email: hyhe@ipe.ac.cn; sjzhang@ipe.ac.cn

Contents

Fig. S1. The evolution of hole mobility of 9EDOT during the last 1

ns.....S3

Fig. S2. Th	Fig. S2. The distribution of φ of 9EDOT chains after regulating by ILsS4						
Fig. S3. Ra	dial distribu	tion functi	on (RDFs)	••••••		•••••	S5
Fig. S4. Th	e DOS of 9	EDOT in p	ristine blends	•••••	••••••		S6
Fig. S5 . Th	e morpholo	gy of 3ED	OT domain	••••	•••••		S7
Fig. S6. Th	e morpholog	gy of 6ED	OT domain		•••••	• • • • • • • • • • • • • • • • • • • •	S8
Table S1.	The items r	related to c	corresponding l	nopping pa	th in pri	stine 3EE	DOT and
6EDOT do	main			•••••	• • • • • • • • • • • • •		S9
Table S2.	The items	related to	o corresponding	g hopping	path in	pristine	3EDOT
domain		after		introducii	ng		series
IL	•••••	•••••	•••••	S10-	-12		
Table S3.	The items	related to	o corresponding	g hopping	path in	pristine	6EDOT
domain		after		introducii	ng		series
IL	•••••	•••••	•••••	S13-	-14		

Fig. S1. The evolution of hole mobility of 9EDOT during the last 1 ns (a) for 1:1 IL added case; (b), (c), and (d) for MC series of ILs added systems; (e), (f), and (g) for MA series of ILs added systems, respectively.

Fig. S2. The distribution of the angle (ϕ) between the connected thiophene rings of 9EDOT chain in the specified ion ratio regulated systems.

Fig. S3. Radial distribution function (RDFs): $g_{N(C)-N(A)}(r)$ between cation and anion, $g_{S-N(C)}(r)$ between 9EDOT and cation, and $g_{S-N(A)}$ between 9EDOT and anion.

Fig. S4. The density of state (DOS) of 9EDOT in pristine 9EDOT:Tos.

Fig. S5. The morphology of 3EDOT domain before and after introducing IL with the specified ion ratio (the plot only shows the thiophene backbone).

Fig. S6. The morphology of 6EDOT domain before and after introducing IL with the specified ion ratio (the plot only shows the thiophene backbone).

Table S1. The static centroid to centroid distance $(r_n, \text{ in } \text{Å})$, the squared transfer integral $(V_{ij}^2, \text{ in } \text{eV}^2)$, the hole hopping rates $(k_{ij}, \text{ in } \text{s}^{-1})$, the hole mobility $(\mu_n \text{ of } n\text{th} \text{ hopping path, in } \text{cm}^2 \text{ V}^{-1} \text{ s}^{-1})$, and the average π - π stacking distance $(d_{\pi-\pi}, \text{ in } \text{Å})$ between the neighboring molecules, as well as the ratio of μ_n/μ_{max} in 3EDOT and 6EDOT domain, respectively.

Path	<i>r</i> _i	V_{ij}^2	<i>k</i> _{ij}	μ^{a}	$\mu_n/\mu_{\rm max}$	$d_{\pi-\pi}$
			3EDOT			
1	4.15	2.07×10 ⁻²	1.26×10 ¹³	4.30×10 ⁻¹	1	3.59
2	4.33	1.66×10-2	1.01×10 ¹³	3.77×10 ⁻¹	0.88	3.94
3	3.52	1.76×10 ⁻²	1.08×10 ¹³	2.64×10 ⁻¹	0.61	3.92
4	3.76	1.24×10-2	7.58×10 ¹²	2.12×10 ⁻¹	0.49	3.29
5	3.75	1.11×10-2	6.81×10 ¹²	1.89×10 ⁻¹	0.44	3.61
6	3.88	8.22×10 ⁻³	5.03×10 ¹²	1.50×10 ⁻¹	0.35	3.57
7	3.59	9.55×10-3	5.84×10 ¹²	1.49×10 ⁻¹	0.35	3.48
8	3.71	3.34×10 ⁻³	2.04×10 ¹²	5.57×10 ⁻²	0.13	3.58
9	3.75	7.56×10-4	4.63×10 ¹¹	1.29×10-2	0.03	3.31
10	3.80	5.01×10 ⁻⁴	3.06×10 ¹¹	8.75×10 ⁻³	0.02	3.61
			6EDOT			
1	3.55	1.96×10 ⁻²	3.04×10 ¹³	7.58×10 ⁻¹	1	3.56
2	11.20	1.60×10-3	2.47×10 ¹²	6.13×10 ⁻¹	0.81	3.67
3	7.68	2.67×10-3	4.13×10 ¹²	4.81×10 ⁻¹	0.63	3.65
4	8.28	4.28×10 ⁻⁴	6.62×10 ¹¹	8.97×10 ⁻²	0.12	3.76
5	16.97	5.01×10-5	7.75×10 ¹⁰	4.41×10-2	0.06	3.60
6	28.35	6.82×10 ⁻⁸	1.06×10 ⁸	1.68×10-4	2.22×10 ⁻⁴	3.00
7	27.77	5.06×10-8	7.83×10 ⁷	1.19×10-4	1.57×10-4	N/A

^a The reorganization energies of 3EDOT and 6EDOT calculated by the normal mode analysis are 0.38 and 0.30 eV, respectively.

Table S2. The static centroid to centroid distance $(r_n, \text{ in } \text{Å})$, the squared transfer integral $(V_{ij}^2, \text{ in } \text{eV}^2)$, the hole hopping rates $(k_{ij}, \text{ in } \text{s}^{-1})$, the hole mobility $(\mu_n \text{ of } n\text{th} \text{ hopping path, in } \text{cm}^2 \text{ V}^{-1} \text{ s}^{-1})$, the average π - π stacking distance $(d_{\pi-\pi}, \text{ in } \text{Å})$ between the neighboring molecules, as well as the ratio of μ_n/μ_{max} and $\mu_n/\mu_{n(\text{pris.})}$ in 3EDOT domain after modified by the specified ion ratio, respectively.

Path	r_n	V_{ij}^2	k_{ij}	μ_n	$\mu_n/\mu_{\rm max}$	$\mu_n/\mu_{n(\text{pris.})}$	$d_{\pi\text{-}\pi}$
				2:1			
1	3.59	3.59×10 ⁻²	2.20×10 ¹³	5.58×10 ⁻¹	1	1.30	3.44
2	4.34	1.94×10 ⁻²	1.18×10 ¹³	4.41×10 ⁻¹	0.79	1.17	3.66
3	3.49	8.89×10 ⁻³	5.44×10 ¹²	1.31×10 ⁻¹	0.23	0.50	3.58
4	3.52	7.88×10 ⁻³	4.82×10 ¹²	1.18×10 ⁻¹	0.21	0.56	3.59
5	4.65	3.64×10 ⁻³	2.23×10 ¹²	9.53×10 ⁻²	0.17	0.50	3.75
6	4.55	1.28×10 ⁻³	7.86×10 ¹¹	3.22×10 ⁻²	0.06	0.21	3.15
7	3.79	1.80×10 ⁻³	1.10×10 ¹²	3.13×10 ⁻²	0.06	0.21	3.58
8	8.70	2.91×10 ⁻⁵	1.78×10^{10}	2.67×10 ⁻³	4.78×10 ⁻³	0.05	N/A
9	3.79	8.53×10-5	5.22×10 ¹⁰	1.48×10-3	2.65×10-3	0.11	3.76
10	3.51	8.49×10 ⁻⁵	5.19×10 ¹⁰	1.27×10 ⁻³	2.28×10-3	0.15	3.29
				3:1			
1	3.41	3.99×10 ⁻²	2.44×10 ¹³	5.63×10 ⁻¹	1	1.31	3.56
2	3.51	2.39×10 ⁻²	1.46×10 ¹³	3.56×10 ⁻¹	0.63	0.94	3.64
3	4.44	1.28×10 ⁻²	7.81×10^{12}	3.04×10 ⁻¹	0.54	1.15	4.09
4	4.24	1.09×10 ⁻²	6.69×10 ¹²	2.38×10 ⁻¹	0.42	1.12	3.55
5	3.58	1.11×10-2	6.82×10 ¹²	1.73×10 ⁻¹	0.31	0.92	3.66
6	4.12	6.30×10 ⁻³	3.86×10 ¹²	1.29×10 ⁻¹	0.23	0.86	3.41
7	3.60	7.17×10 ⁻³	4.39×10 ¹²	1.12×10 ⁻¹	0.20	0.75	3.54
8	3.60	2.37×10 ⁻³	1.45×10 ¹²	3.71×10 ⁻²	0.07	0.67	3.25
9	6.30	6.18×10 ⁻⁴	3.78×10 ¹¹	2.97×10 ⁻²	0.05	2.30	N/A
10	7.47	8.37×10 ⁻⁵	5.12×10 ¹⁰	5.65×10 ⁻³	0.01	0.65	N/A
				4:1			

1	3.54	3.07×10 ⁻²	1.88×10^{13}	4.64×10 ⁻¹	1	1.08	3.52
2	3.56	1.87×10 ⁻²	1.15×10 ¹³	2.86×10 ⁻¹	0.62	0.76	3.75
3	3.61	1.74×10 ⁻²	1.07×10 ¹³	2.75×10 ⁻¹	0.59	1.04	3.82
4	4.44	1.14×10 ⁻²	6.95×10 ¹²	2.70×10-1	0.58	1.27	4.32
5	3.47	1.26×10 ⁻²	7.69×10 ¹²	1.83×10 ⁻¹	0.39	0.97	3.74
6	5.05	5.14×10 ⁻³	3.14×10^{12}	1.59×10-1	0.34	1.06	3.66
7	3.89	4.23×10 ⁻³	2.59×10 ¹²	7.75×10 ⁻²	0.17	0.52	3.41
8	4.95	2.46×10 ⁻³	1.51×10^{12}	7.30×10 ⁻²	0.16	1.31	3.72
9	5.19	1.18×10 ⁻³	7.24×10 ¹¹	3.86×10 ⁻²	0.08	2.99	3.56
10	4.85	1.90×10 ⁻⁶	1.17×10 ⁹	5.42×10 ⁻⁵	1.17×10 ⁻⁴	6.19×10 ⁻³	3.53
				1:1			
1	3.70	1.37×10 ⁻²	8.39×10 ¹²	2.27×10 ⁻¹	1	0.53	3.73
2	3.72	1.18×10-2	7.24×10 ¹²	1.98×10-1	0.87	0.53	3.65
3	3.75	5.89×10 ⁻³	3.60×10 ¹²	1.00×10 ⁻¹	0.44	0.38	4.03
4	3.80	3.42×10 ⁻³	2.09×10^{12}	5.95×10 ⁻²	0.26	0.28	3.57
5	3.70	1.58×10-3	9.69×10 ¹¹	2.63×10-2	0.12	0.14	3.38
6	4.22	9.18×10 ⁻⁴	5.62×10 ¹¹	1.98×10 ⁻²	0.09	0.13	4.46
7	7.86	9.81×10-5	6.00×10 ¹⁰	7.32×10-3	0.03	0.05	N/A
8	6.72	9.16×10-6	5.61×10 ⁹	5.00×10 ⁻⁴	2.20×10-3	8.98×10 ⁻³	N/A
9	3.76	1.93×10 ⁻⁵	1.18×10^{10}	3.30×10 ⁻⁴	1.45×10 ⁻³	0.03	3.42
				1:2			
1	5.12	1.37×10 ⁻²	8.41×10^{12}	4.36×10 ⁻¹	1	1.01	3.42
2	3.59	1.20×10-2	7.32×10^{12}	1.86×10-1	0.43	0.49	3.73
3	3.79	1.03×10 ⁻²	6.32×10 ¹²	1.80×10 ⁻¹	0.41	0.68	3.77
4	4.60	5.84×10 ⁻³	3.58×10^{12}	1.49×10 ⁻¹	0.34	0.70	3.61
5	4.39	5.18×10 ⁻³	3.17×10^{12}	1.21×10 ⁻¹	0.28	0.64	3.72
6	3.88	5.20×10 ⁻³	3.18×10^{12}	9.45×10 ⁻²	0.22	0.63	3.85
7	4.71	6.03×10 ⁻⁴	3.69×10 ¹¹	1.62×10 ⁻²	0.04	0.11	3.75
8	4.77	4.69×10 ⁻⁴	2.87×10 ¹¹	1.29×10 ⁻²	0.03	0.23	3.90

9	5.08	3.90×10 ⁻⁴	2.39×10 ¹¹	1.22×10 ⁻²	0.03	0.95	3.16
				1:3			
1	5.20	2.97×10 ⁻²	1.82×10 ¹³	9.71×10 ⁻¹	1	2.26	3.17
2	4.01	2.14×10 ⁻²	1.31×10 ¹³	4.15×10 ⁻¹	0.43	1.10	3.45
3	3.87	1.38×10 ⁻²	8.45×10 ¹²	2.50×10 ⁻¹	0.26	0.95	3.50
4	3.74	1.14×10 ⁻²	7.00×10 ¹²	1.94×10 ⁻¹	0.20	0.92	3.68
5	3.60	1.21×10 ⁻²	7.38×10 ¹²	1.89×10 ⁻¹	0.19	1.00	3.64
6	4.11	5.88×10 ⁻³	3.60×10 ¹²	1.20×10 ⁻¹	0.12	0.80	3.41
7	3.87	5.17×10 ⁻³	3.16×10 ¹²	9.37×10 ⁻²	0.10	0.63	3.25
8	4.83	9.23×10 ⁻⁴	5.64×10 ¹¹	2.60×10 ⁻²	0.03	0.47	3.51
9	4.07	6.47×10-4	3.96×10 ¹¹	1.29×10 ⁻²	0.01	1.00	3.56
				1:4			
1	5.41	1.99×10 ⁻²	1.22×10 ¹³	7.05×10 ⁻¹	1	1.64	3.68
2	4.46	2.00×10 ⁻²	1.22×10 ¹³	4.79×10 ⁻¹	0.68	1.27	3.25
3	3.71	2.64×10 ⁻²	1.61×10 ¹³	4.38×10 ⁻¹	0.62	1.66	3.54
4	3.59	1.61×10 ⁻²	9.86×10 ¹²	2.51×10 ⁻¹	0.36	1.18	3.54
5	4.02	1.21×10 ⁻²	7.39×10 ¹²	2.36×10 ⁻¹	0.33	1.25	3.57
6	3.54	1.35×10-2	8.28×10 ¹²	2.05×10-1	0.29	1.37	3.42
7	3.93	6.27×10 ⁻³	3.84×10 ¹²	1.17×10 ⁻¹	0.17	0.79	3.73
8	3.80	9.80×10 ⁻⁴	5.99×10 ¹¹	1.71×10 ⁻²	0.02	0.31	3.54

Table S3. The static centroid to centroid distance $(r_n, \text{ in } \text{Å})$, the squared transfer integral $(V_{ij}^2, \text{ in } \text{eV}^2)$, the hole hopping rates $(k_{ij}, \text{ in } \text{s}^{-1})$, the hole mobility $(\mu_n \text{ of } n\text{th} \text{ hopping path, in } \text{cm}^2 \text{ V}^{-1} \text{ s}^{-1})$, the average π - π stacking distance $(d_{\pi-\pi}, \text{ in } \text{Å})$ between the neighboring molecules, as well as the ratio of μ_n/μ_{max} and $\mu_n/\mu_{n(\text{pris.})}$ in 6EDOT domain after modified by the specified ion ratio, respectively.

Path	r_n	V_{ij}^2	k _{ij}	μ_n	$\mu_n/\mu_{\rm max}$	$\mu_n/\mu_{n(\text{pris.})}$	$d_{\pi-\pi}$
				2:1			
1	8.81	1.42×10 ⁻²	2.20×10 ¹³	3.37	1	4.45	3.61
2	11.06	1.51×10 ⁻³	2.34×10 ¹²	5.66×10 ⁻¹	0.17	0.92	3.45
3	3.62	8.86×10 ⁻³	1.37×10 ¹³	3.55×10 ⁻¹	0.11	0.74	3.75
4	14.88	1.18×10 ⁻⁴	1.82×10 ¹¹	7.99×10 ⁻²	0.02	0.89	N/A
5	4.84	3.09×10 ⁻⁴	4.78×10 ¹¹	2.22×10-2	6.59×10 ⁻³	0.50	N/A
6	24.14	2.78×10 ⁻⁹	4.31×10 ⁶	4.96×10 ⁻⁶	1.47×10 ⁻⁶	0.03	N/A
7	15.95	1.09×10 ⁻¹⁰	1.69×10 ⁵	8.49×10 ⁻⁸	2.52×10-8	7.13×10-4	N/A
				3:1			
1	10.61	1.09×10 ⁻²	1.68×10 ¹³	3.75	1	4.95	3.79
2	3.57	1.92×10 ⁻²	2.97×10 ¹³	7.50×10 ⁻¹	0.20	1.22	3.52
3	4.91	6.99×10 ⁻³	1.08×10 ¹³	5.15×10 ⁻¹	0.14	1.07	3.51
4	9.82	4.79×10 ⁻⁵	7.41×10 ¹⁰	1.41×10 ⁻²	3.76×10 ⁻³	0.16	N/A
5	4.82	1.94×10 ⁻⁴	3.01×10 ¹¹	1.38×10 ⁻²	3.68×10 ⁻³	0.31	3.51
				4:1			
1	3.55	2.19×10 ⁻²	3.40×10 ¹³	8.46×10 ⁻¹	1	1.12	3.62
2	3.49	1.29×10 ⁻²	2.00×10 ¹³	4.83×10 ⁻¹	0.57	0.79	3.60
3	4.75	5.17×10-4	7.99×10 ¹¹	3.56×10-2	0.04	0.07	3.65
4	7.46	2.53×10 ⁻⁶	3.91×10 ⁹	4.30×10 ⁻⁴	5.08×10 ⁻⁴	4.79×10 ⁻³	N/A
				1:1			
1	9.44	3.16×10 ⁻³	4.89×10 ¹²	8.61×10 ⁻¹	1	1.14	3.66
2	4.46	7.45×10 ⁻³	1.15×10 ¹³	4.54×10 ⁻¹	0.53	0.74	3.70

3	11.11	6.44×10 ⁻⁴	9.97×10 ¹¹	2.43×10 ⁻¹	0.28	0.51	N/A
				1:2			
1	5.55	1.08×10 ⁻²	1.67×10 ¹³	1.01	1	1.33	3.62
2	8.16	4.73×10 ⁻³	7.32×10 ¹²	9.63×10 ⁻¹	0.95	1.57	3.65
3	4.45	4.22×10 ⁻³	6.52×10 ¹²	2.55×10 ⁻¹	0.25	0.53	3.64
4	8.00	3.95×10 ⁻⁵	6.12×10 ¹⁰	7.73×10 ⁻³	7.65×10 ⁻³	0.09	3.72
				1:3			
1	8.25	7.03×10 ⁻³	1.09×10 ¹³	1.46	1	1.93	3.56
2	5.38	1.38×10 ⁻²	2.13×10 ¹³	1.22	0.84	1.99	3.68
3	11.45	1.94×10 ⁻³	3.00×10 ¹²	7.77×10 ⁻¹	0.53	1.62	3.83
4	8.90	5.07×10 ⁻⁷	7.85×10 ⁸	1.23×10-4	8.42×10 ⁻⁵	1.37×10-3	N/A
5	13.50	1.53×10 ⁻⁷	2.36×10 ⁸	8.52×10 ⁻⁵	5.84×10 ⁻⁵	1.94×10 ⁻³	N/A
				1:4			
1	5.15	8.56×10 ⁻³	1.32×10 ¹³	6.93×10 ⁻¹	1	0.91	3.78
2	3.45	1.76×10 ⁻²	2.72×10 ¹³	6.39×10 ⁻¹	0.92	1.04	3.60
3	6.74	8.12×10-6	1.26×10 ¹⁰	1.13×10-3	1.63×10-3	3.39×10-3	N/A