Supporting Information (SI)

Tuning the Binding Energy of Excitons in Monolayer MoS_2 by Molecular Functionalization and Defective Engineering

Kangli Wang^{1*} and Beate Paulus^1

¹ Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany

E-mail: klwang0329@zedat.fu-berlin.de

Fig. S1: The G_0W_0 band edges of pristine MoS_2 with 55 eV G_0W_0 self-energy as a function of vacuum thickness. Black dashed lines indicate the band edges of the MoS_2 with $30 \times 30 \times 1$ k-point sampling and 15 Å vacuum thickness; CBM and VBM indicate the conduction band minimum and valence band maximum, respectively.

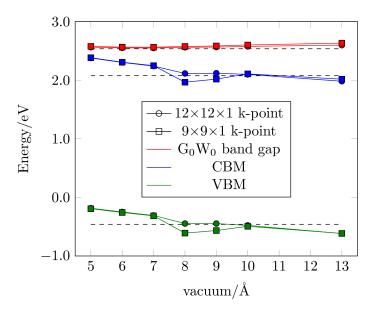


Table S1: The G_0W_0 band gaps of pristine MoS_2 with 55 eV G_0W_0 self-energy, 10 Å vacuum and $12 \times 12 \times 1$ k-point sampling as a function of plane wave (PW) cutoff energy. CBM and VBM indicate the conduction band minimum and valence band maximum, respectively. Energies are in eV.

	PW=500	PW=600	PW=700	PW=800
CBM	3.323	3.322	3.321	3.321
VBM	0.746	0.745	0.745	0.744
G_0W_0 band gap	2.577	2.577	2.576	2.577

Fig. S2: Electronic band structures and density of states for defective MoS₂.

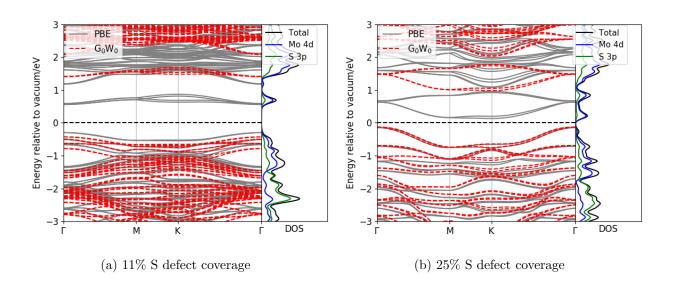


Fig. S3: The most favorable configurations for (a) NO and (b) $C_3H_3N_3$ molecules on pristine MoS_2 with 25% molecular coverage.

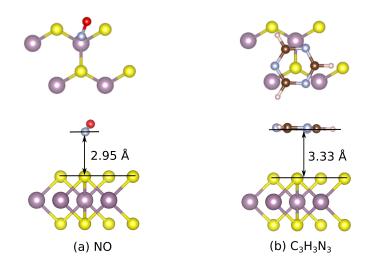


Fig. S4: The most favorable configurations for (a) NO and (b) $C_3H_3N_3$ molecules on defective MoS_2 with 25% molecular and defective coverage.

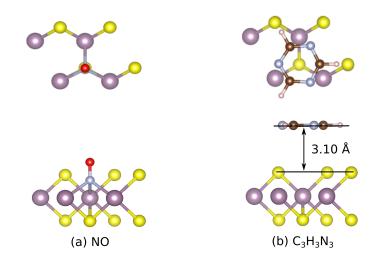
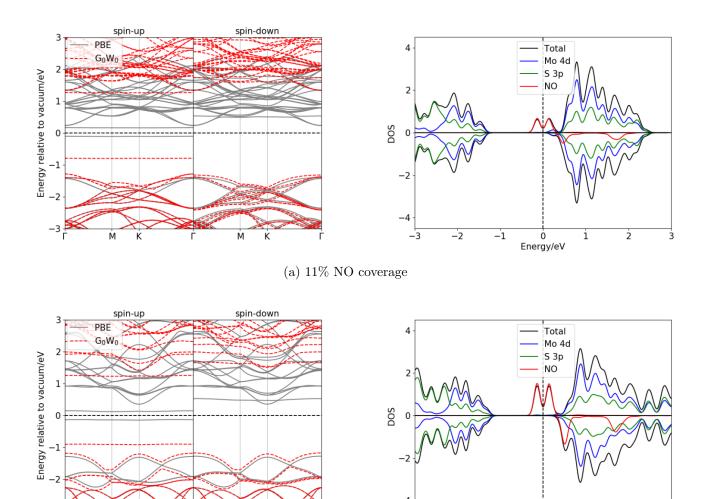



Fig. S5: Electronic band structures and density of states for the NO molecule adsorbed on pristine MoS_2 with (a) 11% and (b) 25% molecular coverage.

(b) 25% NO coverage

M

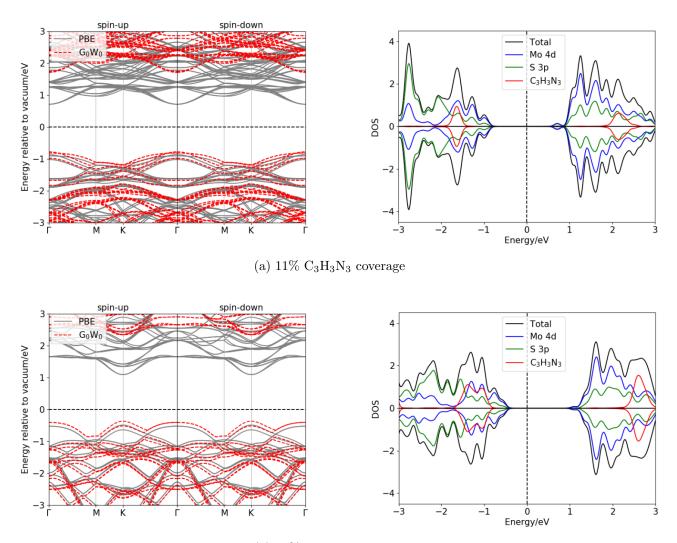
Ŕ

0 Energy/eV

-2

-3

-1

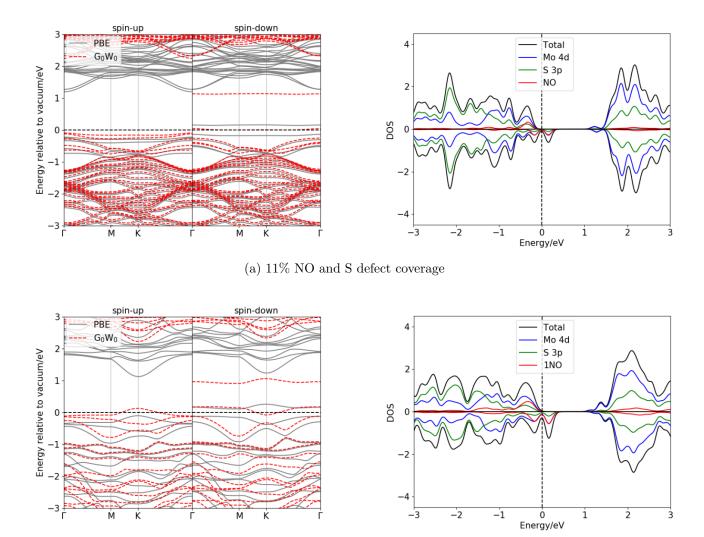

i

ż

Ś

-3

Fig. S6: Electronic band structures and density of states for the $C_3H_3N_3$ molecule on pristine MoS_2 with (a) 11% and (b) 25% molecular coverage.



(b) $25\% C_3H_3N_3$ coverage

Table S2: The DFT band gaps with PBE functional for NO and $C_3H_3N_3$ molecules adsorbed on pristine MoS_2 with 11% and 25% molecular coverage. Energies are in eV.

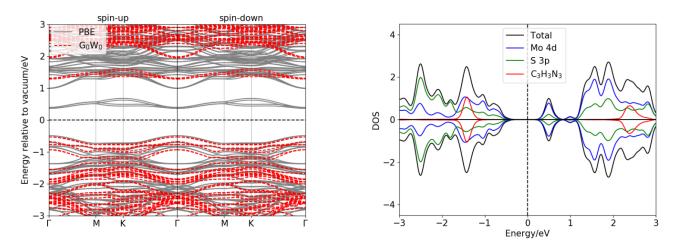
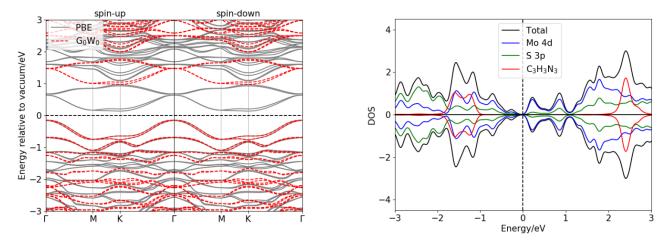

	free	NO		$C_3H_3N_3$	
		11%	25%	11%	25%
DFT band gap	1.58	$0.27(\uparrow)/1.63(\downarrow)$	$0.28(\uparrow)/1.66(\downarrow)$	1.58	1.58

Fig. S7: Electronic band structures and density of states for the NO molecule on defective MoS_2 with (a) 11% and (b) 25% molecular and defective coverage.



(b) 25% NO and S defect coverage

Fig. S8: Electronic band structures and density of states for the $C_3H_3N_3$ molecule on defective MoS_2 with (a) 11% and (b) 25% molecular and defective coverage.

(a) $11\% C_3H_3N_3$ and S defect coverage

(b) 25% C₃H₃N₃ and S defect coverage

Table S3: The DFT band gaps with PBE functional for NO and $C_3H_3N_3$ molecules adsorbed on defective MoS₂ monolayer with 11% and 25% molecular and defective coverage. Energies are in eV.

	S-defect (no molecule)		NO		$C_3H_3N_3$	
	11%	25%	11%	25%	11%	25%
DFT band gap	0.86	0.28	$1.42(\uparrow)/0.29(\downarrow)$	$1.23(\uparrow)/0.29(\downarrow)$	0.86	0.29