Supporting Information

Induced Magnetic Field in sp-Hybridized Carbon Rings: Analysis of Double Aromaticity and Antiaromaticity in Cyclo[2n]carbon Allotropes

Nickolas D. Charistos*a and Alvaro Muñoz-Castro*b

^{*a*}Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, Greece, 54 124.

^{*b*}Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.

Table of cont	tents	Page
Benchmarkin	g of C ₁₈ geometry	S2
Table S1.	Bond lengths and bond length alternation of C_{18} computed with various functionals.	S3
Figure S1.	Optimized geometries of ground states of C_{4n+2} (n=1-6) and C_{4n} (n=2-7) carbon rings	S4
Benchmarkin	ig of NICS	S5
Table S2.	Total NICS $_{zz}$ (ppm) calculated at ring centers with various functionals	S6
Table S3.	Dissected NICS _{zz} (ppm) calculated with PBE functional	S7
Figure S2.	$NICS_{zz}$ trends with regard to ring size and molecular geometry of C_{2N} (N=3-14)	S8
Figure S3.	Dissected π_{out} and $\pi_{in}NICS_{zz}$ trends with regard to ring size and molecular geometry of C_{4n+2} (n=1-6)	S8
Figure S4.	Linear correlation of HOMO _{out} and HOMO _{in} contributions to NICS _{zz} with regard to π_{out} and π_{in} contributions to NICS _{zz} of ground states C _{2N} (N=5-14)	S9
Table S4.	Energy gaps of frontier π_{out} and π_{in} orbitals (eV) and contributions of HOMO_{out} and HOMO_{in} to NICS_zz	S9
Figure S5.	Isosurfaces of HOMO _{out} and HOMO _{in} contributions to B_z^{ind} of C_{4n+2} (n=1-6)	S10
Figure S6.	Isosurfaces of HOMO _{out} and HOMO _{in} contributions to B_z^{ind} of C_{4n} (n=2-6)	S10
Cartesian Coo	ordinates	S12

Benchmarking of C₁₈ geometry

A number of different exchange–correlation functionals (XC), including generalized gradient approximation (GGA), meta-GGA, hybrid, meta-hybrid and range-separated hybrid functionals, were tested for the optimization of C₁₈. The bond lengths of the optimized C₁₈ structures are presented in Table S1. Among them, the following functionals with high percentage of HF exchange (HFX≥50%) produced polyynic geometries with altering bond lengths: BHandHLYP, KMLYP,^[1] CAM-B3LYP,^[2] MO6-HF,^[3] M06-2X,^[4] ω B97X^[5] and ω B97XD. All other functionals with lower HFX percentage and pure GGAs that were tested, namely BP86,^[6] PBE, PW91,^[7] B3LYP,^[8] PBE0,^[9] HSE06,^[10] M06L,^[4] MN12-SX,^[11] TPSS^[12] and TPSSh^[13] produced cumulenic geometries with equal bond lengths. All optimizations were performed with Slater-type triple- ζ basis set with two polarization functions (TZ2P) with the ADF code, except for ω B97XD functional which was used with 6-311++G(d,p) basis set employing Gaussian software.

Functional	HFX	d1 (Å)	d₂ (Å)	BLA
GGA				
BP86	0	1.283		0.000
PBE	0	1.283		0.000
PW91	0	1.282		0.000
Meta-GGA				
MO6L	0	1.274		0.000
TPSS	0	1.281		0.000
Hybrid				
B3LYP	20	1.277		0.000
KMLYP	55.7	1.336	1.207	0.129
BHandHLYP	50	1.339	1.212	0.127
PBEO	25	1.281	1.269	0.012
Meta-hybrid				
M06-2X	54	1.346	1.223	0.123
MO6-HF	100	1.375	1.207	0.168
TPSSH	10	1.277		0.000
Range-separated hybrid				
CAM-B3LYP	19-65	1.341	1.217	0.124
HSE06	25-0	1.275		0.000
MN12-SX	25-0	1.272		0.000
wb97x	15.8-100	1.359	1.212	0.147
wb97xd	22.2-100	1.346	1.223	0.123

Table S1. Bond lengths and bond length alternation of C_{18} computed with various functionals.

Figure S1. Optimized geometries of ground states of C_{4n+2} (n=1-6) (top) and C_{4n} (n=2-7) (bottom) carbon rings computed at the ω B97XD/6-311++G(d,p) level. Blue shades depict short bonds.

Benchmarking of NICS

NICS_{zz} values at the center of each ring were calculated using PBE, B3LYP, CAM-B3LYP, wB97X-D, BHandHLYP and KMLYP functionals (Table S2, Figures S2-S3). All calculations were performed with TZ2P slater basis set using ADF, except for CAM-B3LYP and ωB97X-D which were performed with 6-311++G(d,p) gaussian basis set with Gaussian09. All functionals produce the same qualitative trends of NICS_{zz} values with regard to ring size and bonding pattern, but there are significant quantitative differences among different types of functionals, except for small cumulenic rings C₆ and C₁₀. Pure GGA PBE overestimates NICS_{zz} producing significant larger values with regard to other functionals. Hybrid GGAs with high HF exchange (\geq 50%) BHandHLYP and KMLYP and range-separated hybrid CAM-B3LYP and ω B97X-D produce almost identical NICS_{zz}, which is significantly smaller than PBE. Hybrid-GGA with small HF exchange (20%) B3LYP produce intermediate NICSzz values with regard to PBE and BHandHLYP for polyynic geometries, whereas it produces identical results with PBE for cumulenic transition states. The discrepancy between high HF exchange and low (or zero) HF exchange functionals is smaller in cumulenic geometries with regard to polyynic geometries, whereas dissection to π_{out} and π_{in} contributions reveals that PBE performs equivalent to BHandHLYP for the former and overestimates the response of the later (Figure S3). Hence the choice of functional for the quantitative measurement of the magnetic response is sensitive to the bonding pattern, where polyynic structures are more accurately modelled by high HF exchange hybrid functionals, whereas cumulenic geometries are effectively described by pure GGAs and low HF exchange hybrids. However, although PBE and B3LYP overestimate the magnetic response of polyynic structures, they accurately reproduce the qualitative features of the magnetic response with regard to the ring size and bonding pattern of C_{2N} rings

Molecule	PBE	B3LYP	BHandHLYP	KMLYP	CAM-B3LYP	ωB97X-D
C ₆	-30.8	-33.9	-37.7	-37.7	-33.4	-33.5
C ₈	157.6	147.2	130.9	130.6	131.7	135.2
C ₁₀	-67.7	-66.9	-65.2	-65.9	-67.8	-68.3
C ₁₂	153.9	128.8	96.8	94.9	98.2	98.5
C ₁₄	-92.4	-89.3	-81.6	-81.5	-83.2	-83.0
C ₁₄ TS	-96.2	-94.4	-89.2	-89.6	-89.0	-89.0
C ₁₆	112.1	86.5	57.9	54.9	56.4	53.9
C ₁₈	-68.4	-57.2	-44.7	-40.9	-40.2	-38.4
C ₁₈ TS	-110.7	-109.3	-101.5	-101.1	-101.4	-100.1
C ₂₀	81.5	57.4	33.4	31.0	32.4	29.4
C ₂₂	-50.7	-36.9	-22.0	-19.6	-20.2	-18.3
C ₂₂ TS	-116.6	-115.6	-104.0	-102.2	-104.4	-99.9
C ₂₄	57.1	36.6	18.6	16.9	17.9	15.4
C ₂₆	-37.2	-23.4	-10.9	-9.5	-9.8	-8.5
C ₂₆ TS	-119.3	-118.3	-99.3	-95.0	-100.7	-89.9
C ₂₈	40.0	23.3	10.5	9.4	10.0	8.0

Table S2. Total $NICS_{zz}$ (ppm) calculated at ring centers with various functionals.

Molecule	Point Group	π-out	π-in	HOMO-out	HOMO-in
C ₆	D _{3h}	-38.7	21.0	-24.5	39.3
C ₈	C _{4h}	138.0	31.7	173.1	46.1
C ₁₀	D _{5h}	-51.5	-8.3	-19.1	21.1
C ₁₂	C _{6h}	107.6	51.3	151.7	87.8
C ₁₄	C _{7h}	-53.4	-35.0	-11.8	5.6
C ₁₄ TS	D _{7h}	-56.9	-35.3	-15.1	5.2
C ₁₆	C _{8h}	55.3	60.2	101.7	105.5
C ₁₈	C _{9h}	-34.5	-31.0	10.7	14.3
C ₁₈ TS	D _{9h}	-59.4	-48.7	-12.2	-2.1
$C_{18}H_{18}$	D _{6h}	-46.7	-	-5.9	-
$C_{18}H_6$	D _{3h}	-24.9	16.3	14.7	35.1
C ₂₀	<i>C</i> _{10h}	40.2	43.6	87.6	90.2
C ₂₂	<i>C</i> _{11<i>h</i>}	-25.6	-23.0	21.7	24.3
C ₂₂ TS	D _{11h}	-60.7	-54.0	-10.2	-4.0
C ₂₄	<i>C</i> _{12<i>h</i>}	28.3	30.6	75.1	76.8
C ₂₆	<i>C</i> _{13<i>h</i>}	-18.8	-16.8	29.6	31.5
C ₂₆ TS	D _{13h}	-61.4	-56.3	-8.7	-4.1
C ₂₈	<i>C</i> _{14<i>h</i>}	19.9	21.5	65.4	66.5

Table S3. Dissected NICS_{zz} values (ppm) computed at the PBE functional.

Figure S2. NICS_{zz} trends with regard to ring size and molecular geometry of C_{2N} (N=3-14) molecules computed with different functionals.

Figure S3. Dissected π_{out} and π_{in} NICSzz trends with regard to ring size and molecular geometry of C_{4n+2} (n=1-6) molecules computed with PBE and BHandHLYP functionals.

Figure S4. Linear correlation of HOMO_{out} and HOMO_{in} contributions to NICS_{zz} with regard to π_{out} and π_{in} contributions to NICS_{zz} of ground states C_{2N} (N=5-14).

Molecule	Gap _{out}	Gap _{in}	NICS _{zz} HOMO _{out}	NICS _{zz} HOMO _{in}	Molecule	Gap _{out}	Gap _{in}	NICS _{zz} HOMO _{out}	NICS _{zz} HOMO _{in}
C ₆			-25.5	36.0	C ₈			144.1	40.5
C ₁₀	7.32	7.78	-19.6	25.2	C ₁₂	4.51	5.43	104.8	65.0
C ₁₄	5.72	5.89	-8.3	14.6	C ₁₆	4.53	4.48	66.4	70.0
C ₁₄ TS	5.66	5.90	-14.6	14.3	C ₂₀	4.34	4.31	53.7	55.9
C ₁₈	5.43	5.34	23.0	27.3	C ₂₄	4.25	4.23	44.3	45.7
C ₁₈ TS	4.53	4.73	-10.9	8.6	C ₂₈	4.20	4.19	37.7	38.5
C ₂₂	5.11	5.06	33.5	36.3					
C ₂₂ TS	3.84	4.02	-7.4	8.7					
C ₂₆	4.88	4.85	38.2	40.1					
C ₂₆ TS	3.37	3.56	-3.0	12.5					

Table S4. Energy gaps of frontier π_{out} and π_{in} orbitals (eV) and contributions of HOMO_{out} and HOMO_{in} to NICS_{zz} (ppm) computed with BHandHLYP functional.

Figure S5. Isosurfaces of HOMO_{out} (top) and HOMO_{in} (bottom) contributions to B_z^{ind} of ground states C_{4n+2} (n=1-6) rings. Isovalues: cyan -5ppm, orange +5ppm, red +25ppm.

Figure S6. Isosurfaces of HOMO_{out} (top) and HOMO_{in} (bottom) contributions to B_z^{ind} of C_{4n} (n=2-6) rings. Isovalues: cyan -5ppm, orange +5ppm, blue -25ppm, red +25ppm.

References

- [1] J. K. Kang, C. B. Musgrave, J. Chem. Phys. 2001, 115, 11040–11051.
- [2] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
- [3] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 13126–13130.
- [4] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, *120*, 215–241.
- [5] J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- [6] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098–3100.
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, *Phys. Rev. B* 1992, 46, 6671–6687.
- [8] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- [9] M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029–5036.
- [10] J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207–8215.
- [11] R. Peverati, D. G. Truhlar, Phys. Chem. Chem. Phys. 2012, 14, 16187–16191.
- [12] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
- [13] G. I. Csonka, J. P. Perdew, A. Ruzsinszky, J. Chem. Theory Comput. 2010, 6, 3688–3703.

Cartesian Coordinates

 ω B97XD/6-311++G(d,p)

C₆ *D*_{3h}

E = -228	.206530
----------	---------

С	0.0000000	-1.0859440	0.0000000
С	1.2735170	-0.7352820	0.0000000
С	0.9405770	0.5430000	0.0000000
С	0.0000000	1.4705090	0.0000000
С	-0.9405770	0.5430000	0.0000000
С	-1.2735170	-0.7352820	0.0000000

C₈ *C*_{4*h*}

E = -304.335629

С	-1.3027820	1.3027820	0.0000000
С	-0.0672930	1.4993900	0.0000000
С	0.0672930	-1.4993900	0.0000000
С	1.3027820	1.3027820	0.0000000
С	1.3027820	-1.3027820	0.0000000
С	1.4993900	0.0672930	0.0000000
С	-1.3027820	-1.3027820	0.0000000
С	-1.4993900	-0.0672930	0.0000000

C10 D5h

E = -3	380.575446		
С	1.2790080	1.7604040	0.0000000
С	0.0000000	1.9283100	0.0000000
С	1.1334320	-1.5600360	0.0000000
С	-1.2790080	1.7604040	0.0000000
С	0.0000000	-2.1759790	0.0000000
С	-1.8339320	0.5958810	0.0000000

С	2.0694790	-0.6724140	0.0000000
С	1.8339320	0.5958810	0.0000000
С	-2.0694790	-0.6724140	0.0000000
С	-1.1334320	-1.5600360	0.0000000

C₁₂ C_{6h}

E = -456.681834

С	0.0000000	2.5793970	0.0000000
С	1.1280850	2.0803390	0.0000000
С	2.2338240	1.2896990	0.0000000
С	-2.2338240	1.2896990	0.0000000
С	-2.3656690	-0.0632190	0.0000000
С	-2.2338240	-1.2896990	0.0000000
С	2.3656690	0.0632190	0.0000000
С	-1.2375840	2.0171200	0.0000000
С	-1.1280850	-2.0803390	0.0000000
С	2.2338240	-1.2896990	0.0000000
С	1.2375840	-2.0171200	0.0000000
С	0.0000000	-2.5793970	0.0000000

C14 C7h

E = -5	532.870509		
С	-1.8300790	2.2948460	0.0000000
С	-0.5956820	2.7253300	0.0000000
С	0.6531480	2.8616270	0.0000000
С	-1.8300790	-2.2948460	0.0000000
С	-0.6457850	-2.7138940	0.0000000
С	0.6531480	-2.8616270	0.0000000
С	1.7593470	2.1649390	0.0000000
С	-2.5021510	1.2334920	0.0000000
С	-2.5244480	-1.1871900	0.0000000

С	1.7191680	-2.1969810	0.0000000
С	2.6445410	1.2735440	0.0000000
С	2.7895520	-0.0256960	0.0000000
С	2.6445410	-1.2735440	0.0000000
С	-2.9352190	0.0000000	0.0000000

C14 D7h TS

E = -532.870323

С	0.6658156	2.8593626	0.0000000
С	-0.6063816	2.7113108	0.0000000
С	-1.8204423	2.3033139	0.0000000
С	-2.4978760	1.2163169	0.0000000
С	-2.9361268	0.0128347	0.0000000
С	-2.5082764	-1.1943892	0.0000000
С	-1.8404759	-2.2872995	0.0000000
С	-0.6300058	-2.7058595	0.0000000
С	0.6408267	-2.8653253	0.0000000
С	1.7226534	-2.1796900	0.0000000
С	2.6394969	-1.2853588	0.0000000
С	2.7781054	-0.0120959	0.0000000
С	2.6509281	1.2623731	0.0000000
С	1.7417588	2.1645063	0.0000000

 $C_{16} C_{8h}$

E = -609.001310

С	-0.0754360	3.2966470	0.0000000
С	1.2679410	3.0610800	0.0000000
С	2.2777400	2.3844230	0.0000000
С	3.0610800	1.2679410	0.0000000
С	3.2966470	0.0754360	0.0000000
С	3.0610800	-1.2679410	0.0000000
С	2.3844230	-2.2777400	0.0000000

С	1.2679410	-3.0610800	0.0000000
С	0.0754360	-3.2966470	0.0000000
С	-1.2679410	-3.0610800	0.0000000
С	-2.2777400	-2.3844230	0.0000000
С	-1.2679410	3.0610800	0.0000000
С	-3.0610800	1.2679410	0.0000000
С	-2.3844230	2.2777400	0.0000000
С	-3.0610800	-1.2679410	0.0000000
С	-3.2966470	-0.0754360	0.0000000

C₁₈ C_{9h}

E = -685.16711831

С	1.8496640	3.2037110	0.0000000
С	0.5804130	3.6511990	0.0000000
С	-0.6423810	3.6431260	0.0000000
С	-1.9023230	3.1700630	0.0000000
С	-2.8338490	2.3778820	0.0000000
С	-3.4949410	1.2056190	0.0000000
С	-3.6993270	0.0000000	0.0000000
С	-3.4522370	-1.3229470	0.0000000
С	-2.8338490	-2.3778820	0.0000000
С	-1.7941930	-3.2324920	0.0000000
С	-0.6423810	-3.6431260	0.0000000
С	0.7033740	-3.6295180	0.0000000
С	1.8496640	-3.2037110	0.0000000
С	2.8718250	-2.3282520	0.0000000
С	3.4762300	-1.2652440	0.0000000
С	3.6965170	0.0624290	0.0000000
С	3.4762300	1.2652440	0.0000000
С	2.7915680	2.4238980	0.0000000

C₁₈ D_{9h} TS

E = -685.14975271

С	0.0000000	3.6131830	0.0000000
С	1.2718520	3.4943840	0.0000000
С	2.3225090	2.7678590	0.0000000
С	3.2204420	1.8593230	0.0000000
С	3.5582900	0.6274230	0.0000000
С	3.6621510	-0.6457360	0.0000000
С	3.1291080	-1.8065910	0.0000000
С	2.3902990	-2.8486480	0.0000000
С	1.2357810	-3.3952810	0.0000000
С	0.0000000	-3.7186460	0.0000000
С	-1.2357810	-3.3952810	0.0000000
С	-2.3902990	-2.8486480	0.0000000
С	-3.1291080	-1.8065910	0.0000000
С	-3.6621510	-0.6457360	0.0000000
С	-3.5582900	0.6274230	0.0000000
С	-3.2204420	1.8593230	0.0000000
С	-2.3225090	2.7678590	0.0000000
С	-1.2718520	3.4943840	0.0000000

C₂₀ C_{10h}

E = -761.308249

С	1.20382200	3.93675000	0.00000000
С	0.00000000	4.10985900	0.00000000
С	-1.34005100	3.89248700	0.00000000
С	-2.41571500	3.32494600	0.00000000

-3.37207000	2.36142600	0.00000000
-3.90870800	1.27001600	0.00000000
-4.11607400	-0.07162000	0.00000000
-3.90870800	-1.27001600	0.00000000
-3.28787700	-2.47730900	0.00000000
-2.41571500	-3.32494600	0.00000000
-1.20382200	-3.93675000	0.00000000
0.00000000	-4.10985900	0.00000000
1.34005100	-3.89248700	0.00000000
2.41571500	-3.32494600	0.00000000
3.37207000	-2.36142600	0.00000000
3.90870800	-1.27001600	0.00000000
4.11607400	0.07162000	0.00000000
3.90870800	1.27001600	0.00000000
3.28787700	2.47730900	0.00000000
2.41571500	3.32494600	0.00000000
	-3.37207000 -3.90870800 -4.11607400 -3.90870800 -3.28787700 -2.41571500 -1.20382200 0.00000000 1.34005100 2.41571500 3.37207000 3.90870800 4.11607400 3.90870800 3.28787700 2.41571500	-3.37207000 2.36142600 -3.90870800 1.27001600 -4.11607400 -0.07162000 -3.90870800 -1.27001600 -3.28787700 -2.47730900 -2.41571500 -3.32494600 0.00000000 -4.10985900 1.34005100 -3.89248700 2.41571500 -3.32494600 3.37207000 -2.36142600 3.90870800 -1.27001600 4.11607400 0.07162000 3.90870800 1.27001600 3.28787700 2.47730900 2.41571500 3.32494600

C22 C11h

E = -837.462203

С	0.57579800	4.47169300	0.00000000
С	-0.64304500	4.47247600	0.00000000
С	-1.93318700	4.07312800	0.00000000
С	-2.95896700	3.41483000	0.00000000
С	-3.82840000	2.38137300	0.00000000
С	-4.33543800	1.27299900	0.00000000
С	-4.50812200	-0.06645100	0.00000000
С	-4.33543800	-1.27299900	0.00000000
С	-3.75654800	-2.49317700	0.00000000

С	-2.95896700	-3.41483000	0.00000000
С	-1.81229600	-4.12833700	0.00000000
С	-0.64304500	-4.47247600	0.00000000
С	0.70734700	-4.45277900	0.00000000
С	1.87703900	-4.11014300	0.00000000
С	3.00241200	-3.36349500	0.00000000
С	3.80117700	-2.44286800	0.00000000
С	4.34423300	-1.20632600	0.00000000
С	4.51846800	0.00000000	0.00000000
С	4.30679000	1.33384400	0.00000000
С	3.80117700	2.44286800	0.00000000
С	2.90197200	3.45052700	0.00000000
С	1.87703900	4.11014300	0.00000000

C22 *D11h* TS

E = -837.423290

С	0.00000000	4.43090000	0.00000000
С	-1.27217100	4.33124200	0.00000000
С	-2.39672700	3.72824700	0.00000000
С	-3.41334600	2.95701900	0.00000000
С	-4.03352400	1.84183700	0.00000000
С	-4.47118600	0.64316600	0.00000000
С	-4.38871200	-0.63021800	0.00000000
С	-4.10813600	-1.87505100	0.00000000
С	-3.35039500	-2.90174300	0.00000000
С	-2.44148800	-3.79740700	0.00000000
С	-1.24893300	-4.25141800	0.00000000
С	-0.00016200	-4.51360400	0.00000000

С	1.24876100	-4.25179400	0.00000000
С	2.44121600	-3.79770100	0.00000000
С	3.35061200	-2.90249600	0.00000000
С	4.10870700	-1.87606900	0.00000000
С	4.38918900	-0.63118800	0.00000000
С	4.47158500	0.64222100	0.00000000
С	4.03328600	1.84065400	0.00000000
С	3.41287700	2.95571400	0.00000000
С	2.39648400	3.72718000	0.00000000
С	1.27206400	4.33050900	0.00000000

C₂₄ C_{12h}

E = -913.605670

С	4.89181400	0.60809900	0.00000000
С	4.53213800	1.91472200	0.00000000
С	3.93226300	2.97256700	0.00000000
С	2.96761000	3.92439700	0.00000000
С	1.91930400	4.54089500	0.00000000
С	0.60806600	4.88299300	0.00000000
С	-0.60806700	4.89239300	0.00000000
С	-1.91448100	4.53243300	0.00000000
С	-2.97226900	3.93237700	0.00000000
С	-3.92397300	2.96763900	0.00000000
С	-4.54042200	1.91929200	0.00000000
С	-4.88252100	0.60806200	0.00000000
С	-4.89198100	-0.60807400	0.00000000
С	-4.53213200	-1.91451700	0.00000000
С	-3.93218600	-2.97236800	0.00000000

С	-2.96755500	-3.92418100	0.00000000
С	-1.91927200	-4.54073600	0.00000000
С	-0.60806700	-4.88294000	0.00000000
С	0.60806600	-4.89245000	0.00000000
С	1.91451300	-4.53259500	0.00000000
С	2.97232100	-3.93259300	0.00000000
С	3.92404500	-2.96783400	0.00000000
С	4.54042400	-1.91949400	0.00000000
С	4.88235900	-0.60808800	0.00000000

C₂₆ C_{13h}

E = -989.753925

С	3.99206500	3.53666100	0.00000000
С	0.57416600	5.29264100	0.00000000
С	5.17836600	1.27635300	0.00000000
С	4.68192200	2.53403300	0.00000000
С	1.89123000	-4.98676300	0.00000000
С	3.07990100	-4.34234100	0.00000000
С	3.99206500	-3.53666100	0.00000000
С	4.74510300	-2.41365100	0.00000000
С	5.17836600	-1.27635300	0.00000000
С	5.32326000	0.06797800	0.00000000
С	-0.64286400	5.29445700	0.00000000
С	-1.95121400	4.95322900	0.00000000
С	-3.02968400	4.38925600	0.00000000
С	-4.02959500	3.47909200	0.00000000
С	-3.02968400	-4.38925600	0.00000000
С	-1.82409400	-5.00144000	0.00000000

С	0.70913000	-5.27625300	0.00000000
С	-0.64286400	-5.29445700	0.00000000
С	-5.15230700	-1.33994200	0.00000000
С	-5.33334400	0.00000000	0.00000000
С	-5.18484400	1.20793700	0.00000000
С	-4.72244100	2.47852800	0.00000000
С	1.89123000	4.98676300	0.00000000
С	2.96801200	4.41957300	0.00000000
С	-4.72244100	-2.47852800	0.00000000
С	-3.93944000	-3.58085600	0.00000000

C₂₆ D_{13h} TS

E = -989.694306

С	0.5993758	5.2117963	-0.0006111
С	-0.6746203	5.2759736	-0.0002328
С	-1.8913579	4.8929044	-0.0011626
С	-3.0494916	4.3581542	-0.0006488
С	-3.9490533	3.4537415	-0.0013906
С	-4.7262489	2.4422245	-0.0006315
С	-5.1021778	1.2232467	-0.0011087
С	-5.3195518	-0.0337151	-0.0005291
С	-5.0855967	-1.2877024	-0.0011518
С	-4.6938637	-2.5016727	-0.0001669
С	-3.9040811	-3.5034083	-0.0006701
С	-2.9933723	-4.3966039	0.0003747
С	-1.8287873	-4.9171590	0.0000369
С	-0.6073461	-5.2850130	0.0008381
С	0.6657340	-5.2045071	0.0002194

С	1.9181889	-4.9624736	0.0012008
С	3.0077169	-4.2990405	0.0007121
С	4.0038606	-3.5022292	0.0014816
С	4.6602888	-2.4084696	0.0007135
С	5.1720898	-1.2400131	0.0012604
С	5.2452476	0.0334994	0.0002136
С	5.1560467	1.3059843	0.0008703
С	4.6295338	2.4678612	-0.0000648
С	3.9594702	3.5533171	0.0005358
С	2.9531346	4.3372228	-0.0003708
С	1.8548609	4.9860813	0.0002822

C₂₈ C_{14h}

E = -1065.897865

С	0.01166100	-0.02217400	0.00000000
С	1.22772100	-0.01900200	0.00000000
С	2.54222200	0.30471700	0.00000000
С	3.63665400	0.83482400	0.00000000
С	4.68019000	1.69715000	0.00000000
С	5.43648900	2.64941000	0.00000000
С	6.00280100	3.87898200	0.00000000
С	6.26968900	5.06538600	0.00000000
С	6.24506600	6.41890900	0.00000000
С	5.97094700	7.60365300	0.00000000
С	5.36104500	8.81219500	0.00000000
С	4.59933700	9.76013400	0.00000000
С	3.52562800	10.58465100	0.00000000
С	2.42828100	11.10868500	0.00000000
С	1.10320600	11.38586500	0.00000000

С	-0.11285400	11.38269300	0.00000000
С	-1.42735400	11.05897400	0.00000000
С	-2.52178600	10.52886700	0.00000000
С	-3.56532200	9.66654000	0.00000000
С	-4.32162200	8.71428100	0.00000000
С	-4.88793400	7.48470800	0.00000000
С	-5.15482200	6.29830500	0.00000000
С	-5.13019900	4.94478200	0.00000000
С	-4.85608000	3.76003700	0.00000000
С	-4.24617700	2.55149600	0.00000000
С	-3.48447000	1.60355700	0.00000000
С	-2.41076000	0.77904000	0.00000000
С	-1.31341400	0.25500600	0.00000000