SUPPLEMENTARY INFORMATION

Photophysics and photochemistry of carminic acid and related natural pigments

Margherita Zucchelli, ^{a,b,†} Fernando D. Villarruel, ^{a,c,†} Pedro David-Gara, ^d Mariana R. Costante, ^c Marcos Tascón, ^{b, e} Fernando Marte, ^{b,*} Fernando S. García Einschlag, ^{c,*} Franco M. Cabrerizo ^{a,*}

^a Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2,
CC 164 (B7130IWA), Chascomús, Argentina. E-mail: <u>fcabrerizo@intech.gov.ar</u>

^b IIPC-Tarea, Universidad Nacional de San Martin, Quinquela Martin 1784, CABA, Argentina. E-mail: <u>fmarte.iipc@gmail.com</u>

^c INIFTA - CONICET, Universidad Nacional de La Plata, Diag. 113 y 64 (1900), La Plata, Argentina. Email: <u>fgarciae@quimica.unlp.edu.ar</u>

^d Centro de Investigaciones Ópticas (CIOP – CONICET – CIC), Universidad Nacional de La Plata, C.C. 3,
(1897) La Plata, Argentina.

^{*e*} Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, San Martin, Buenos Aires, Argentina.

* To whom correspondence should be addressed (<u>fcabrerizo@intech.gov.ar</u>, <u>fgeins@inifta.unlp.edu.ar and</u> <u>fmarte.iipc@gmail.com</u>)

[†]Both authors contributed equally

Contents:

<u>Page</u>

1.	UV-visible absorption spectra of air-equilibrated CA aqueous solution irradiated at 350 nm	
	and 366 nm	S3
2.	EEMs of CA irradiated aqueous solution (420 nm)	S4
3.	EEMs of CA irradiated aqueous solution (300 nm)	S 5
4.	Difference UV-visible absorption and emission spectra of CA aqueous solution irradiated	
	under air-equilibrated and N2-saturated conditions	S6
5.	Hydrogen peroxide production upon CA photoexcitation	S7
6.	Effect of SOD on the photodegradation of CA	S8
7.	Effect of sodium azide (NaN ₃) on the photodegradation of CA	S9
8.	Normalized Difference spectra of CA Lake air-equilibrated aqueous solution irradiated	
	at 420 nm and 300 nm	S10
9.	EEMs of CA Lake irradiated aqueous solution (420 nm)	S11
10	• EEMs of CA Lake irradiated aqueous solution (300 nm)	S12
11	. Comparative analysis of CA, Lake and the photoproducts fluorescence emission spectra	S13

1. UV-visible absorption spectra of air-equilibrated CA aqueous solution irradiated at 350 nm and 366 nm

Figure SI.1. Evolution of the UV-visible absorption spectra of air-equilibrated CA aqueous solution ([CA]₀ = 340 μ M) when subject to irradiation: (a) hv = 350 nm, and (b) hv = 366 nm.

2. EEMs of CA irradiated aqueous solution (420 nm)

Figure SI.2. Evolution of EEMs of air-equilibrated CA aqueous solution ($[CA]_0 = 110 \mu M$) when subject to irradiation (*hv* = 420 nm). Irradiation times are depicted as inset inside each EEM.

3. EEMs of CA irradiated aqueous solution (300 nm)

Figure SI.3. Evolution of EEMs of air-equilibrated CA aqueous solution ($[CA]_0 = 110 \mu M$) when subject to irradiation (hv = 300 nm). Irradiation times are depicted as inset inside each EEM.

4. Difference UV-visible absorption and emission spectra of CA aqueous solution irradiated under air-equilibrated and N₂-saturated conditions

Figure SI.4. (a) Experimental difference (ED) absorption spectra of CA irradiated (hv = 420 nm; Irradiation time = 24 h) under air-equilibrated (**black**) and N₂-saturated (**red**) atmosphere. (b) Fluorescence emission spectra of CA recorded under air-equilibrated and N₂-saturated solutions.

5. Hydrogen peroxide production upon CA photoexcitation

Figure SI.5. Generation of H_2O_2 upon photoexcitation (hv = 420 nm, irradiation times = 0, 6 and 12 h) of CA in air-equilibrated aqueous solution ([CA]₀ = 110 μ M).

Absorbance / a.u.

Figure SI.6. (a) UV-vis absorption and **(b)** Normalized Difference (ND) spectra of CA solution ($[CA]_0 = 110 \ \mu\text{M}$) irradiated ($hv = 420 \ \text{nm}$) in the absence (**red**) and in the presence (**black**) of SOD (40 U/ml). **(c)** Evolution of EEMs of CA irradiated solutions. Irradiation times are depicted as inset inside each EEM.

7. Effect of sodium azide (NaN₃) on the photodegradation of CA

Figure SI.7. (a) Normalized Difference (ND) UV-vis absorption spectra of CA solution ($[CA]_0 = 110 \mu M$) irradiated (hv = 420 nm, irradiation time = 7 h) in the absence (**black**) and in the presence (**red**) of sodium azide ($[NaN_3]_0 = 11 \text{ mM}$). (b) Evolution of absorbance at 495 nm as a function of the irradiation time.

8. Normalized Difference spectra of CA Lake air-equilibrated aqueous solution irradiated at 300 nm and 420 nm

Figure SI.8. Normalized Difference (ND) absorption spectra of Lake aqueous solutions irradiated at hv = 420 nm (red) and 300 nm (black). Total irradiation time = 24 h.

9. EEMs of CA Lake irradiated aqueous solution (420 nm)

Figure SI.9. Evolution of EEMs of air-equilibrated Lake aqueous solution when subject to irradiation (hv = 420 nm. Irradiation times are depicted as inset inside each EEM.

10. EEMs of CA Lake irradiated aqueous solution (300 nm)

Figure SI.10. Evolution of EEMs of air-equilibrated Lake aqueous solution when subject to irradiation (hv = 300 nm). Irradiation times are depicted as inset inside each EEM.

11. Comparative analysis of CA, Lake and the photoproducts fluorescence emission spectra

Figure SI.11. (a) Normalized fluorescence emission spectra of CA (**red**) and CA-like chromophore (**black**) produced upon irradiation (hv = 300 nm) of Lake. (**b**) Evolution of the total emission intensity of CA-like chromophore (calculated as the integral below the entire emission spectra) as a function of the irradiation time (hv = 300 and 420 nm). (**c**) and (**d**) Normalized excitation (dashed lines, $\lambda_{em} = 495$ nm) and emission (solid lines, $\lambda_{exc} = 340$ nm) spectra of photoproducts F#3 and F#4, respectively, obtained during the irradiation (24 h) of CA (**red**) and Lake (**black**).