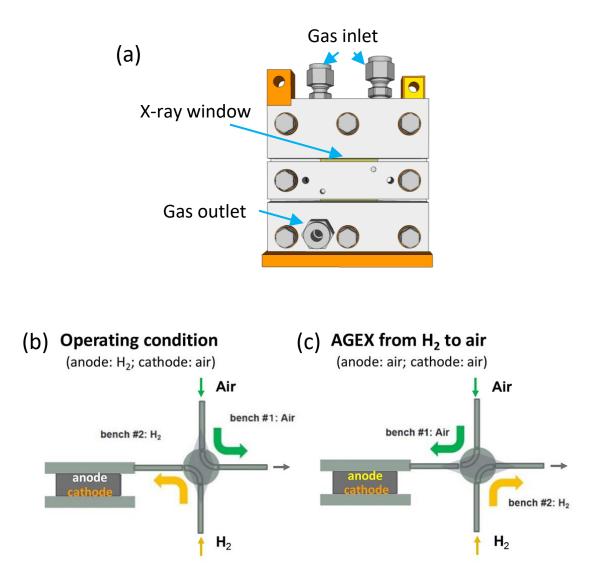
Supporting Information

Visualization and Understanding of Degradation Behaviors of a PEFC Pt/C Cathode Electrocatalyst by a Multi-Analysis System Combining Time-Resolved Quick XAFS, Three-Dimensional XAFS_CT, and Same-View Nano-XAFS/STEM-EDS Techniques

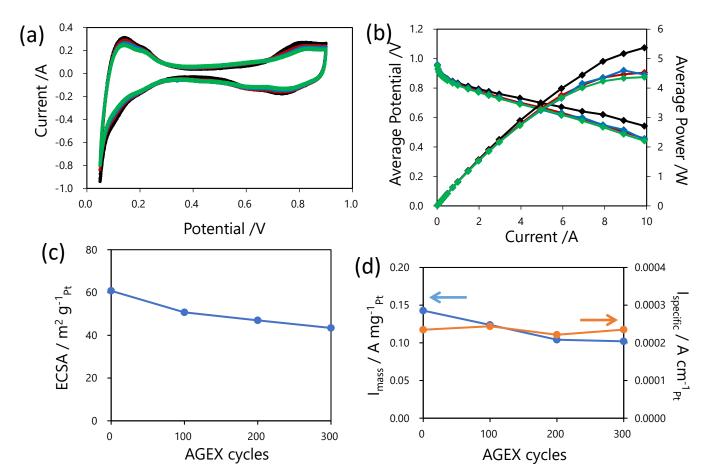
Kotaro Higashi,[†] Shinobu Takao,[†] Gabor Samjeské,^{†,‡} Hirosuke Matsui, [‡] Mizuki Tada, ^{‡,§} Tomoya Uruga,^{†,¶} and Yasuhiro Iwasawa^{†,††*}

[†] Innovation Research Center for Fuel Cells, The University of Electro-Communications,

Chofu, Tokyo 182-8585, Japan


^{*t*} Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan

[§] Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan


¶JASRI/SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

^{*††*} Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

*Corresponding author: <u>iwasawa@pc.uec.ac.jp</u>

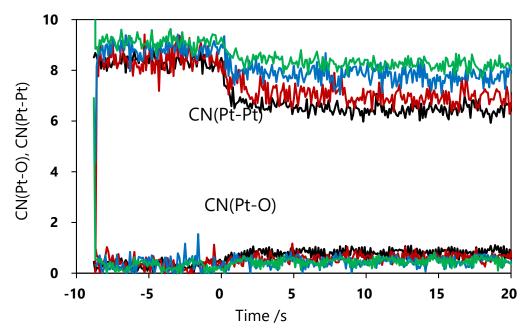


Figure S1. (a) Schematic of homemade PEFC single cell for SR X-ray based multi measurements; (b, c) AGEX setup for MEA in PEFC by a four-way valve.

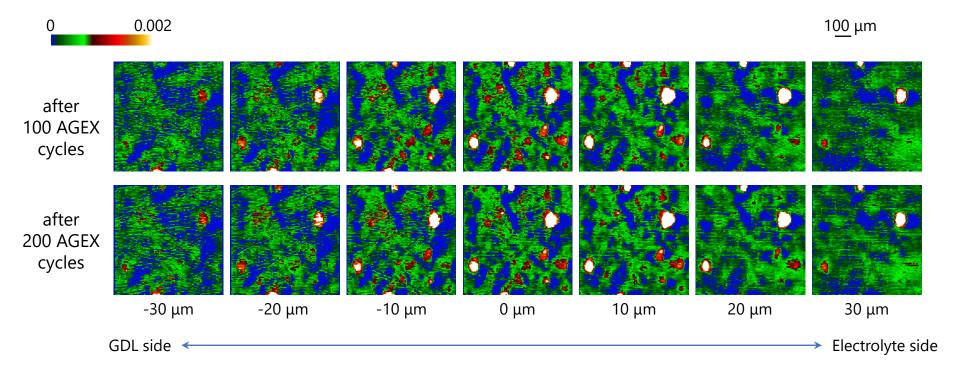
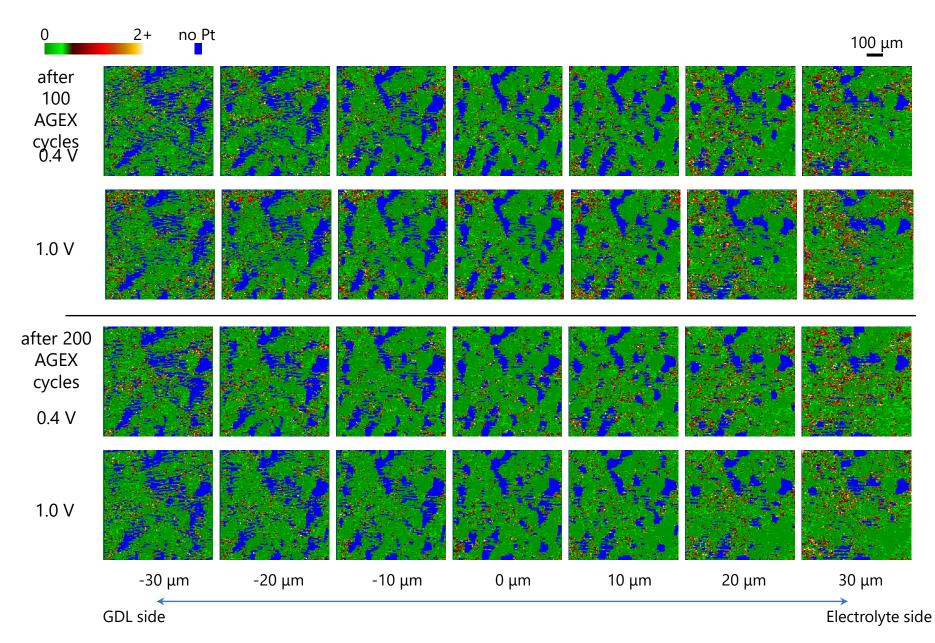
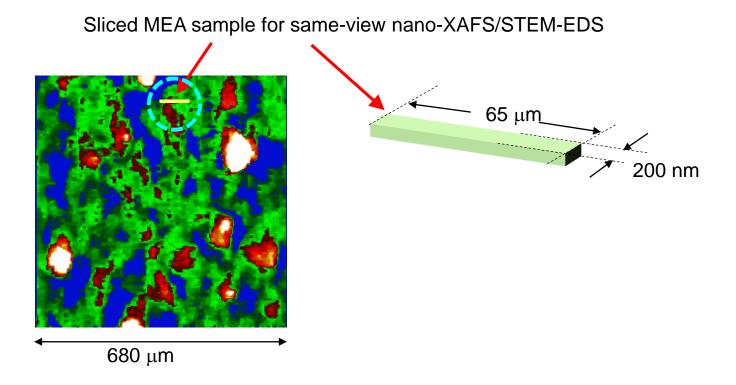


Figure S2. Electrochemical data. (a) cyclic voltammograms (CVs), (b) I-V polarization curves, (c) electrochemical active surface areas (ECSA), (d) mass activities (MA) and surface specific activities (SA) of the MEA Pt/C samples after aging (before AGEX) and after 100, 200 and 300 AGEX cycles.

Electrochemical experiments in the AGEX treatments were controlled and monitored using a combination of AUTOLAB302N PGSTAT and BOOSTER20A with NOVA software (Metrohm Autolab B.V.). Cyclic voltammograms (CVs) for the MEAs were conducted between 0.05 and 0.9 V_{RHE} at 20 and 50 mV s⁻¹ in H₂ (anode) and N₂ (cathode) operating atmospheres. The hydrogen adsorption charge determined from the CV (at 50 mV s⁻¹) was used to calculate the electrochemical surface area (ECSA) after correction for the double-layer charge in the potential region between 0.05–~0.4 V, assuming 210 µC cm⁻² as hydrogen adsorption charge for polycrystalline Pt. Following the CVs, MEA performances were examined under the galvanostatic conditions by applying stepwise increasing constant currents for 1 min followed by a frequency response analysis (FRA) at 10 mA AC amplitude and 1000 Hz frequency to measure the real part of the fuel-cell impedance to obtain the iR-free cell potentials. Performance tests (MA and SA) were carried out using air as cathode feed gas as described previously. [refs. 48,70] Fuel cell temperature was kept at 80°C and gas humidifier at 78°C, resulting in a relative humidity of about 92% during all experimental procedures. In AGEX, starting from the PEFC operating conditions (H₂-air) and when the anode H₂ gas was switched to air, which corresponds to the shutdown conditions (air-air).

Figure S3. Transient response curves of the CN(Pt-O) and CN(Pt-Pt) for the MEA Pt/C cathode catalysts under the voltage operation $0.4 \rightarrow 1.0 \text{ V}_{\text{RHE}}$. black: after aging (before AGEX); red: 100 AGEX cycles; blue: 200 AGEX cycles; green: 300 AGEX cycles; yellow: exponential fit. Under H₂ (anode)-N₂ (cathode); cell temp.: 353 K, relative humidity: ~93%. Data acquisition: every 100 ms.

Figure S4. Cross-sectional images of Pt amount distribution at each depth of the cathode catalyst layer after 100 and 200 AGEX cycles at a cell potential of $1.0 V_{RHE}$.

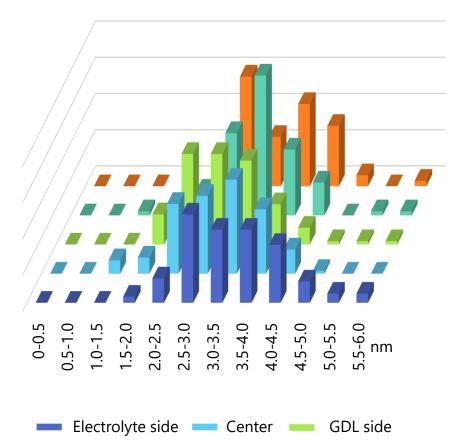

Figure S5. Cross-sectional images of Pt valence distribution determined by the white line peak intensity at each depth of the cathode catalyst layer after 100 and 200 AGEX cycles at a cell potential of 0.4 or 1.0 V_{RHE} ._{S6}

Figure S6. A sliced MEA sample area in a cross-sectional Pt-quantity imaging of the cathode catalyst layer after 300 AGEX cycles for same-view nano-XAFS/STEM-EDS.

Table S1. Statistics of voids of the MEA Pt/C cathode layer after 300 AGEX cycles in eachregion in Figure 10.

	Electrolyte boundary area	GDL boundary area	Center area
Numbers of voids	539	316	472
Average void sizes / nm	387	283	276
Void fractions / %	16.7	5.2	7.4

Figure S7. Histograms of P_{μ} particle diversion the MEAoPM/C cathode layer after 300 AGEX cycles by STEM images. Areas up to 5 µm from the electrolyte boundary (blue), GDL boundary (green), and center area (light blue). and areas around voids (blue green) and inside voids (orange).

	Pt particle / nm	C support / nm
Electrolyte side	3.5	41.0
Center	3.0	41.2
GDL side	2.9	40.1
Around void	3.3	32.0
In void	3.3	-

Table S2. Statistics of Pt particle sizes in the MEA Pt/C cathode layer after 300 AGEX cycles in each region in Figure S7.