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Figure S1. Plots of calculated trans-O-glycoside J-couplings in 2 as a function 
of the phi (f) torsion angle, defined as H1'–C1'–O1'–C4. (A) 2JC1',C4. (B) 
3JH1',C4. (C) 3JC2',C4. Green points, full data set. Blue points, trimmed data 
set.  Red points, y-constrained data set. The colored solid lines represent the 
functions obtained from parameterization of the corresponding data sets. 



 S3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure S2. Plots of calculated trans-O-glycoside J-couplings in 3 as a function 
of the phi (f) torsion angle, defined as H1'–C1'–O1'–C2. (A) 2JC1',C2. (B) 
3JH1',C2. (C) 3JC2',C2. Green points, full data set. Blue points, trimmed data set.  
Red points, y-constrained data set. The colored solid lines represent the 
functions obtained from parameterization of the corresponding data sets. 
 



 S4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure S3. Plots of calculated trans-O-glycoside J-couplings in 4 as a function 
of the phi (f) torsion angle, defined as H1'–C1'–O1'–C3. (A) 2JC1',C3. (B) 
3JH1',C3. (C) 3JC2',C3. Green points, full data set. Blue points, trimmed data set.  
Red points, y-constrained data set. The colored solid lines represent the 
functions obtained from parameterization of the corresponding data sets. 
 



 S5 

f-Dependent J-Coupling Equations for 2–4 Using the Full, Trimmed and 
Constrained DFT Datasets for Parameterization 

 
bGlc-(1®4)-bGlcOCH3 (2) – full 
2JC1’,C4 (Hz) =  –2.90 + 1.05 cos f – 0.79 sin f – 0.28 sin 2f 
        rms 0.61 Hz  [1] 
  
3JC2’,C4 (Hz) =  1.35 + 0.52 cos f + 0.75 sin f – 0.10 cos 2f + 1.54 sin 2f 
        rms 0.39 Hz  [2] 
  
3JH1’,C4 (Hz) =  3.69 – 2.07 cos f – 0.10 sin f + 3.79 cos 2f + 0.82 sin 2f 
        rms 0.50 Hz  [3] 
  
bGlc-(1®4)-bGlcOCH3 (2) – trimmed 
2JC1’,C4 (Hz) =  –2.53 + 0.84 cos f – 0.90 sin f – 0.19 cos 2f – 0.36 sin 2f 
        rms 0.45 Hz  [4] 
  
3JC2’,C4 (Hz) =  1.51 + 0.34 cos f + 0.46 sin f – 0.17 cos 2f + 1.76 sin 2f 
        rms 0.35 Hz  [5] 
  
3JH1’,C4 (Hz) =  3.62 – 1.90 cos f – 0.10 sin f + 3.72 cos 2f + 0.83 sin 2f 
        rms 0.54 Hz  [6] 
 
aMan-(1®2)-aManOCH3 (3) – full 
2JC1’,C2 (Hz) =  –3.15 + 1.29 cos f + 0.21 sin f + 0.30 sin 2f 
        rms 0.88 Hz  [7] 
  
3JC2’,C2 (Hz) =  1.70 + 0.86 cos f – 1.31 sin f – 0.70 cos 2f – 1.62 sin 2f 
        rms 0.68 Hz  [8] 
  
3JH1’,C2 (Hz) =  4.04 – 2.31 cos f + 0.21 sin f + 4.04 cos 2f – 0.90 sin 2f 
        rms 0.63 Hz  [9] 
 
aMan-(1®2)-aManOCH3 (3) – trimmed 
2JC1’,C2 (Hz) =  –2.58 + 0.88 cos f + 0.22 sin f – 0.36 cos 2f + 0.45 sin 2f 
        rms 0.68 Hz  [10] 
  
3JC2’,C2 (Hz) =  1.88 + 0.78 cos f – 0.73 sin f – 0.92 cos 2f – 1.84 sin 2f 
        rms 0.53 Hz  [11] 
  
3JH1’,C2 (Hz) =  3.82 – 1.88 cos f + 0.15 sin f + 3.67 cos 2f – 0.84 sin 2f 
        rms 0.68 Hz  [12]  
 
aMan-(1®3)-bManOCH3 (4) – full 
2JC1’,C3 (Hz) =  –3.34 + 1.43 cos f + 0.7 sin f + 0.12 cos 2f + 0.33 sin 2f 
        rms 0.70 Hz  [13] 
 
   
3JC2’,C3 (Hz) =  1.64 + 0.90 cos f – 1.34 sin f – 0.60 cos 2f – 1.64 sin 2f 
        rms 0.59 Hz  [14] 
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3JH1’,C3 (Hz) =  4.23 – 2.59 cos f + 0.26 sin f + 4.18 cos 2f – 1.02 sin 2f 
        rms 0.49 Hz  [15]  
 
aMan-(1®3)-bManOCH3 (4) – trimmed 
2JC1’,C3 (Hz) =  –2.75 + 0.99 cos f + 0.7 sin f - 0.28 cos 2f + 0.35 sin 2f 
        rms 0.50 Hz  [16] 
  
3JC2’,C3 (Hz) =  2.07 + 0.50 cos f – 0.31 sin f – 0.81 cos 2f – 2.26 sin 2f 
        rms 0.30 Hz  [17]  
3JH1’,C3 (Hz) =  3.75 – 1.72 cos f + 0.26 sin f + 3.66 cos 2f – 1.02 sin 2f 
        rms 0.57 Hz  [18]  
 
bGlc-(1®4)-bGlcOCH3 (2) – constrained 
2JC1’,C4 (Hz) =  –2.10 + 0.89 cos f – 0.80 sin f – 0.46 sin 2f 
        rms 0.18 Hz  [19] 
  
3JC2’,C4 (Hz) =  1.70 + 0.21 cos f + 0.27 sin f + 0.11 cos 2f + 2.04 sin 2f 
        rms 0.21 Hz  [20] 
  
3JH1’,C4 (Hz) =  3.68 – 0.83 cos f + 3.80 cos 2f + 0.68 sin 2f 
        rms 0.21Hz  [21]  
 
aMan-(1®2)-aManOCH3 (3) – constrained 
2JC1’,C2 (Hz) =  –2.16 + 1.39 cos f + 0.20 sin f + 0.41 sin 2f 
        rms 0.20 Hz  [22]  
3JC2’,C2 (Hz) =  2.02 + 0.84 cos f – 0.38 sin f – 1.05 cos 2f – 1.91 sin 2f 
        rms 0.41 Hz  [23] 
  
3JH1’,C2 (Hz) =  4.33 – 1.49 cos f + 0.12 sin f + 4.32 cos 2f – 1.09 sin 2f 
        rms 0.37 Hz  [24]  
 
aMan-(1®3)-bManOCH3 (4) – constrained 
2JC1’,C3 (Hz) =  –2.41 + 1.46 cos f + 0.18 sin f + 0.47 sin 2f 
        rms 0.20 Hz  [25] 
  
3JC2’,C3 (Hz) =  2.01 + 0.72 cos f – 0.30 sin f – 0.85 cos 2f – 2.00 sin 2f 
        rms 0.37 Hz  [26] 
  
3JH1’,C3 (Hz) =  4.55 – 1.88 cos f + 0.26 sin f + 4.57 cos 2f – 1.08 sin 2f 
        rms 0.27 Hz  [27]  
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Molecular Dynamics Simulations of Disaccharides 2–4 

 
Initial structures of 2–4 were built using the Carbohydrate Builder module available 

at the GLYCAM website (http://www.glycam.org).1 The GLYCAM062 (version j) force field 
was employed in all simulations. Structures 2–4 were solvated with TIP3P3 water using a 
12Å buffer in a cubic box, using the LEaP module in the AMBER14 software package.4 
Energy minimizations for solvated 2–4 were performed separately under constant volume 
(500 steps steepest descent, followed by 24500 steps of conjugate-gradient minimization). 
Each system was subsequently heated to 300K over a period of 50 ps, followed by 
equilibration at 300K for a further 0.5 ns using the nPT condition, with the Berendsen 
thermostat5 for temperature control. All covalent bonds involving hydrogen atoms were 
constrained using the SHAKE algorithm,6 allowing a simulation time step of 2 fs throughout 
the simulation. After equilibration, production simulations were carried out with the GPU 
implementation7 of the PMEMD.MPI module, and trajectory frames were collected every 1 
ps for a total of 1 μs. One to four non-bonded interactions were not scaled8 and a non-
bonded cut-off of 8 Å was applied to van der Waals interactions, with long-range 
electrostatics treated with the particle mesh Ewald approximation. Output from each MD 
simulation was imported into Prism for visualization. 
 
References 
(1) Complex Carbohydrate Research Center (CRCC), University of Georgia. http://www.glycam.org  
(2) Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeiriño, J., Daniels, C. R., 
Foley, B. L., and Woods, R. J. (2008) GLYCAM06: A Generalizable Biomolecular Force Field. 
Carbohydrates, J. Comput. Chem. 29, 622–655. 
(3) Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) 
Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys. 79, 926–
935. 
(4) Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E. I., 
Darden, T. A., Duke, R. E., Gohlke, H. et al. (2014) AMBER 14, University of California, San 
Francisco. 
(5) Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984) 
Molecular Dynamics With Coupling to an External Bath, J. Chem. Phys. 81, 3684–3690. 
(6) van Gunsteren, W. F., and Berendsen, H. J. C. (1977) Algorithms for Macromolecular Dynamics 
and Constraint Dynamics, Mol. Phys. 34, 1311–1327. 
(7) Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., and Walker, R. C. (2012) 
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized 
Born, J. Chem. Theory Comput. 8, 1542–1555. 
(8) Kirschner, K. N., and Woods, R. J. (2001) Solvent Interactions Determine Carbohydrate 
Conformation, Proc. Natl. Acad. Sci. U. S. A. 98, 10541–10545. 
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DFT-Derived Hydroxymethyl Equations for 
Methyl b-D-Glucopyranoside (6) 

 
 

2JH6R,H6S (Hz) =  –11.37 – 0.34 cos q + 0.01 sin q – 0.41 cos 2q – 0.99 sin 2q 
         RMSD = 1.29 Hz* 
 
3JH5,H6R (Hz) =  5.22 – 0.42 cos q – 0.04 sin q + 4.21 cos 2q – 2.01 sin 2q 
         RMSD = 0.58 Hz 
 
3JH5,H6S (Hz) =  5.19 + 0.11 cos q – 0.02 sin q – 2.35 cos 2q – 4.45 sin 2q 
         RMSD = 0.45 Hz 
 
 
*The large error associated with this equation is caused by the secondary dependence of 
the 2JHH value on C6–O6 bond rotation. When this rotation is highly constrained as in 5, 
the error drops to ~0.4 Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plots of the equations shown 
above for 2JH6R/H6S (A), 
3JH5,H6R (B), and 3JH5,H6S (C). 
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Brief description of MA’AT analysis 

The dependence of NMR J-couplings on molecular torsion angles is well 
understood, making it possible to obtain a function of J(θ) that yields the dependence of the 
torsion angle on the J-coupling. Furthermore, since NMR provides information that is 
population-averaged, rather than conformations of single molecules, experimental J-
coupling constants are time-averaged values over the entire population. Therefore, the 
experimental J-coupling (Jexp) can be described mathematically by Eq. [1], where J(θ) 
equals the J-coupling at torsion angle θ and p(θ) is the population density. 

A set of parameterized equations can be obtained from experiment or from density 
functional theory (DFT) (or other) calculations to treat an ensemble of J-couplings that is 
sensitive to a specific torsion angle, q. The challenge then becomes how to use this 

information to determine p(θ). Several computational methods have been developed to 
solve this problem. The simplest method assumes that p(θ) is zero outside of a few discrete 
values of q. While the simplicity of this method is appealing, there are several drawbacks. 
Assuming that torsion angle θ can only populate a few values introduces bias in the 
treatment.  Furthermore, this assumption has no physical basis since it is highly likely that 
the molecule will experience some degree of libration about the optimal torsion angle or 
angles and that transition states between the optimal torsion angles will contribute to the 
experimental J-couplings.  
 Continuous models have been proposed to overcome these problems. To better 
approximate the true distribution, these models structure p(θ) as a sum of basis functions.  
A common example of this approach is the method known as CUPID1 (ContinUous 
ProbabIlity Distribution of rotamers) that uses a Fourier series to represent p(θ). Fourier 
series have the benefit of being well understood functions, and with techniques like fast 
Fourier transformation (FFT), computations are possible even on limited hardware.  
However, this approach suffers from several drawbacks. Trigonometric functions are 
unconventional when describing a probability distribution because their behavior can yield 
results that would not be expected physically. They do not occur naturally from a large 
number of trials and they can produce negative values. Most importantly, because there are 
typically only a few J-couplings in an ensemble, the Fourier series must be truncated after 
a few terms. This truncation produces a function that derives much of its shape from the 
trigonometric basis instead of from the data. 
 A logical choice for representing p(θ) would be a sum of Gaussian distributions. 
Gaussians arise naturally from a large number of trials and do not require several terms to 

Eq. [1] 
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produce a series with variable peak widths like trigonometric functions. From a physical 
standpoint, it is likely that libration about an optimal torsion angle will produce a Gaussian 
distribution. However, Gaussian distributions are not periodic, that is, they are defined over 
the entire real line, whereas an angular probability distribution should be defined over a 
finite interval (e.g., 0 to 2p). Furthermore, evaluating the integral in Eq. [1] numerically for 
many sample points as part of a nonlinear optimization is computationally intensive, 
especially as the dimension of the sample space increases (each Gaussian introduces three 
additional dimensions). The method applied in the MA'AT program eliminates these 
problems by first implementing a mixed wrapped normal distribution and subsequently 
obtaining a mathematically equivalent expression that can be solved efficiently. The method 
evaluates Eq. [1] exactly without integration.  
 Solving Eq. [1] exactly is achieved by representing p(θ) as a sum of wrapped normal 
distributions as shown in Eq. [2], where P is the number of peaks, Wp is the weighting 
parameter per peak, µp is the mean position, and σp is the circular standard deviation. J(θ) 

is defined as a Karplus-like trigonometric function represented in Eq. [3], where a, c, and s 

are constants for a specific J-coupling and N is the degree of the polynomial (usually 2 or 
3). Substituting these two functions into Eq. [1] and evaluating the integral produces the 
MA’AT equation (Eq. [4]). An ensemble of J-couplings gives rise to a series of MA’AT 
equations, making it possible to solve for optimal values Wp, µp, and sp.  

The MA’AT equation has been encoded into an application that generates 
population distributions from user supplied Karplus-like equations and experimental data. 
The application is organized into four separate processes. The first process uploads the 
data and parameters required for the analysis. The second step generates random 
population models and then calculates the root mean squared deviation (RMS) of each 
model. The third step optimizes the models with the lowest RMS from the second step using 
the Nelder-Mead derivative-free algorithm. The final step organizes the data into numeric 

Eq. [3] 

Eq. [2] 

Eq. [4] 
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and visual outputs. The standard errors of each parameter are estimated by taking the 
square roots of the diagonal elements from an inverted hessian matrix. 
 
(1) Dzakula, Z.; Westler, W. M.; Edison, A. S.; Markley, J. L. J. Am. Chem. Soc. 1992, 
114, 6195–6199. 
 
 
 


