Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supplementary Information for

Excited-state relaxation mechanism of potential UVA-activated phototherapy molecules: trajectory surface hopping simulations of both 4-thiothymine and 2,4dithiothymine

Jun Cao,^{*,1,2} Dong-chu Chen¹

¹School of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong, 528000, P. R. China

²Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang, Guizhou, 550018, P. R. China

Contents:

Table S1. Relative energies (kcal/mol) of the optimized structures of 4-thiothymine.

Table S2. Relative energies (kcal/mol) of the optimized structures of 2,4-dithiothymine.

Table S3. Absolute values of the calculated singlet-triplet splitting at the optimized excited singlet state minima in vacuum at different level of theory.

Table S4. Absolute values of the calculated S_2 - T_3 splitting at the twenty S_2/T_3 crossing points of 4-thiothymine in water at different level of theory.

Figure S1. The (TD-)B3LYP/6-31G* optimized geometrical parameters of both molecules.

Figure S2. The molecular orbitals at the Franck-Condon geometry of 4-thiothymine optimized at the B3LYP/6-31G* level.

Figure S3. The molecular orbitals at the Franck-Condon geometry of 2,4-dithiothymine optimized at the B3LYP/6-31G* level.

Figure S4. Net population transfer among the electronic states of 4-thiothymine.

Figure S5. Time-evolution of the C2-O7 (r_{27}) bond-length and its ensemble-averaged value, as well as the S8–N1–N3–C5 pyramidalization angle for 4-thiothymine.

Figure S6. Distribution of p_{8435} vs. p_{8135} of the $S_2 \rightarrow S_1$ crossing points for 4-thiothymine.

Figure S7. Distribution of p_{8435} vs. p_{8135} of the singlet \rightarrow triplet crossing points for 4-thiothymine.

Figure S8. Net population transfer among the electronic states of 2,4-dithiothymine.

Figure S9. Time-evolution of the S7–C2–N1–N3, S7–C5–N1–N3, and S8–N1–N3–C5 pyramidalization angles of 2,4-dithiothymine.

Figure S10. Distribution of both hopping time and key geometrical parameters at the $S_3 \rightarrow S_2$ and $S_2 \rightarrow S_1$ hopping points for 2,4-dithiothymine.

Figure S11. Distribution of bond-length and pyramidalization angles at the singlet to triplet crossing points for 2,4-dithiothymine.

S1. Cartesian coordinates of the structures optimized at the (TD-)B3LYP/6-31G* level.

Minima	State	TD-B3LYP/6-	MS-	Exp. ^a
structure		31G*	CASPT2//CAS(1	
			2,9)/	
			ANO-L ^a	
4tT_S ₀	S ₀	0.00	0.0	
	$S_1(n_8\pi_8^*)$	2.90	2.87	
	$S_2(\pi_{56}\pi_8^*)$	4.61	4.17	3.70
	$S_3(\pi_8\pi_8^*)$	4.90		(335 nm)
$4tT_{1}n_{8}\pi_{8}*$	$S_1(n_8\pi_8^*)$	2.62	2.51	
$4tT_{1}\pi_{56}\pi_{8}*$	$S_2(\pi_{56}\pi_8^*)$	4.17	3.44	3.10
$4tT_{3}\pi_{56}\pi_{8}*$	$T_1(\pi_{56}\pi_8^*)$	2.17	2.34	2.29
$4tT_{3}n_{8}\pi_{8}*$	$T_2(n_8\pi_8^*)$	2.29		

Table S1. Relative energies (eV) of the optimized structures of 4-thiothymine at different level of theory.

^a Ref. 10 in the main text.

Table S2. Relative energies (eV) of the optimized structures of 2,4-dithiothymine at different level of theory.

Minima	State	TD- B3LYP/6-	MS-CASPT2//	Exp. ^b
		31G*	CAS(16,12)/	
			6-31G* ^a	
24dtT_S ₀	S ₀	0.00	0.00	
	$S_1(n_8\pi_8^*)$	2.87	2.90	
	$S_2(n_7\pi_7^*)$	3.55	3.69	
	$S_3(\pi_7 \pi_8^*)$	3.59	3.71	3.39
				(365 nm)
$24 dt T_{1}n_{8}\pi_{8}*$	$S_1(n_8\pi_8^*)$	2.60	2.56	
$24 dt T_{1} \pi_{7} \pi_{8}^{*}$	$S_2(\pi_7\pi_8^*)$	2.91	3.35	
$24 dt T_{3} \pi_{8} \pi_{8} *$	$T_1(\pi_8\pi_8^*)$	2.14	2.33	2.29
$24 dt T_{3} n_{8} \pi_{8} *$	$T_2(n_8\pi_8^*)$	2.26		

^a ref.15 in the main text.

^b ref.s 3 and 6 in the main text.

Table S3.	Absolute	values	of the	e calculated	singlet-triplet	splitting a	it the	optimized
excited sin	glet state	minima	in vac	cuum at diff	erent level of t	heory.		

	4-thiothymine				
Minimum		MS-CASPT2	TD-	MS(6)-CASPT2(12,9)//	
		//CASSCF(12,9)/ANO-L ^a	B3LYP/6-31G*	TD-B3LYP/6-31G*	
$4tT_{1}n_{8}\pi_{8}*$	S ₁ -T ₁ :	0.04	0.26	0.05	
	S ₁ -T ₂ :	0.14	0.30	0.21	
$4tT_{1}\pi_{56}\pi_{8}*$	S ₂ -T ₃ :		0.31	0.66	
	S ₂ -T ₂ :	0.73	1.57	0.57	

2,4-dithiothymine					
Minimum	1	ГD//	MS-CASPT2//	TD-B3LYP//	MS(6)-CASPT2(16,12)//
	CAS(16	,12)/6-31G*b	CAS(16,12)/6-3	31G*c B3LYP/6-31C	G* B3LYP/6-31G*
$24 dt T_{1}n_{8}\pi_{8}*$	S ₁ - T ₁ :	0.27	0.02	0.27	0.01
	S ₁ - T ₂ :	0.29	0.01	0.30	0.16
$24 dt T_1 \pi_7 \pi_8^*$	S ₂ -T ₃ :	0.13	0.11	0.09	0.08
	S ₂ -T ₂ :	0.27	0.48	0.17	0.25

^a ref. 10 in the main text.

^b the structures are taken from ref. 15 in the main text.

^c ref. 15 in the main text.

Table S4 . Absolute values of the calculated S_2 - T_3 splitting (eV) at the twenty $S_2/$	T ₃
crossing points of 4-thiothymine in water at different level of theory.	

U 1		
Points	TD-B3LYP/6-31G*	MS(6)-CASPT2(12,9)//TD-
		B3LYP6-31G*
Point 1	0.12	0.28
Point 2	0.15	0.13
Point 3	0.15	0.11
Point 4	0.1	0.07
Point 5	0.01	0.18
Point 6	0.25	0.01
Point 7	0.42	0.08
Point 8	0.29	0.14
Point 9	0.12	0.14
Point 10	0.18	0.13
Point 11	0.47	0.57
Point 12	0.13	0.19
Point 13	0.11	0.08
Point 14	0.04	0.08
Point 15	0.2	0.26
Point 16	0.1	0.05
Point 17	0.21	0.04
Point 18	0.16	0.32
Point 19	0.2	0.16
Point 20	0.16	0.13

Figure S1. Some key geometrical parameters (bond-length unit in angstrom, Å) of the optimized structures in different electronic states, along with the atom numbering scheme in the S₀ minimum of 4-thiothymine (4tT_S₀). The excited state minima of 4-thiothymine in the S₁, S₂, T₁, and T₂ surfaces, of $n_8\pi_8^*$, $\pi_{56}\pi_8^*$, $\pi_{56}\pi_8^*$, and $n_8\pi_8^*$ character, are referred as $4tT_{-1}n_8\pi_8^*$, $4tT_{-1}\pi_{56}\pi_8^*$, $4tT_{-3}\pi_{56}\pi_8^*$, and $4tT_{-3}n_8\pi_8^*$, respectively, in this figure. For 2,4-dithiothymine, the minimum in the S₀ state and the excited S₁, S₂, T₁, and T₂ surfaces, of $n_8\pi_8^*$, $\pi_7\pi_8^*$, $\pi_8\pi_8^*$, and $n_8\pi_8^*$ character, are referred as $24dtT_{-50}$, $24dtT_{-1}n_8\pi_8^*$, $24dtT_{-1}\pi_7\pi_8^*$, $24dtT_{-3}\pi_7\pi_8^*$, and $24dtT_{-3}n_8\pi_8^*$, respectively, in this figure. See Section S1 of ESI for Cartesian coordinates of these structures. The italic ones for 4-thiothymine are from optimizations at the CAS(12,9)/6-31G* level, and the italic ones for 2,4-dithiothymine are taken from ref.

15 in the main text.

Figure S2. The molecular orbitals at the Franck-Condon geometry of 4-thiothymine optimized at the B3LYP/6-31G* level.

Figure S3. The molecular orbitals at the Franck-Condon geometry of 2,4dithiothymine optimized at the B3LYP/6-31G* level.

Figure S4. Net population transfer (numbers of trajectories) among the electronic states of 4-thiothymine.

Figure S5. Time-evolution of the C2-O7 (r_{27}) bond-length and its ensemble-averaged value (the white line), as well as the S8–N1–N3–C5 pyramidalization angle (p_{8135}) for 4-thiothymine. Bond-length unit in angstrom, Å, and pyramidalization angle unit in degrees, °. Different trajectories are coded by color.

Figure S6. Distribution of p_{8435} vs. p_{8135} of the $S_2 \rightarrow S_1$ crossing points for 4-thiothymine. Bond-length unit in angstrom, Å, and pyramidalization angle unit in degrees, °.

Figure S7. Distribution of p_{8435} vs. p_{8135} of the singlet \rightarrow triplet crossing points for 4-thiothymine. Bond-length unit in angstrom, Å, and pyramidalization angle unit in

degrees, °.

Figure S8. Net population transfer (numbers of trajectories) among the electronic states of 2,4-dithiothymine.

Figure S9. Time-evolution of the S7–C2–N1–N3 (p_{7213}), S7–C5–N1–N3 (p_{7513}), and S8–N1–N3–C5 (p_{8135}) pyramidalization angles of 2,4-dithiothymine. Pyramidalization angle unit in degrees, °. Different trajectories are coded by color.

Figure S10. Distribution of both hopping time and key geometrical parameters at the $S_3 \rightarrow S_2$ and $S_2 \rightarrow S_1$ hopping points for 2,4-dithiothymine. Bond-length unit in angstrom, Å, and pyramidalization angle unit in degrees, °.

Figure S11. Distribution of bond-length and pyramidalization angles at the singlet-to-triplet crossing points (including $S_1 \rightarrow T_{2,3}$ and $S_2 \rightarrow T_{2,3}$ in vacuum, and $S_1 \rightarrow T_{1,2,3}$ and $S_2 \rightarrow T_{2,3}$ in water) for 2,4-dithiothymine. Bond-length unit in angstrom, Å, and pyramidalization angle unit in degrees, °.

S1. Cartesian coordinates of the structures optimized at the (TD-)B3LYP/6-31G* level.

4tT S₀

N	0.131680000	0.002151000	-3.145002000
С	0.066855000	-1.315037000	-2.707856000

Ν	0.001749000	-1.408106000	-1.323661000
С	-0.004026000	-0.382606000	-0.386965000
С	0.067704000	0.957715000	-0.945022000
С	0.132220000	1.084160000	-2.296673000
0	0.065398000	-2.273746000	-3.456318000
S	-0.089025000	-0.740703000	1.237537000
Н	0.180656000	0.121518000	-4.147753000
Н	-0.047745000	-2.354745000	-0.961409000
Н	0.187454000	2.052109000	-2.783624000
С	0.069242000	2.157498000	-0.040320000
Н	-0.834361000	2.182028000	0.577983000
Н	0.918844000	2.125920000	0.650168000
Н	0.123208000	3.083690000	-0.621642000
4tT_1	$n_{8}\pi_{8}^{*}$		
Ν	0.132026000	-0.009513000	-3.152440000
С	0.065673000	-1.312550000	-2.708394000
Ν	-0.000025000	-1.415567000	-1.319624000
С	-0.000891000	-0.335394000	-0.434834000
С	0.066841000	0.954274000	-0.940473000
С	0.134158000	1.112888000	-2.323056000
0	0.065756000	-2.286829000	-3.441065000
S	-0.090945000	-0.762699000	1.286104000
Н	0.180278000	0.088631000	-4.156786000
Н	-0.047012000	-2.366507000	-0.980403000
Н	0.189570000	2.073564000	-2.814397000
С	0.068340000	2.150981000	-0.022746000
Н	-0.841141000	2.187992000	0.589772000
Н	0.925211000	2.130647000	0.662174000
Н	0.122015000	3.081928000	-0.594390000
4tT_12	$\pi_{56}\pi_{8}^{*}$		
N	0.120711000	0.004719000	-3.139603000
С	0.066894000	-1.309379000	-2.716765000
Ν	0.011794000	-1.392653000	-1.305460000
С	0.010606000	-0.337909000	-0.440256000
С	0.065871000	0.953955000	-0.910262000
С	0.122873000	1.112194000	-2.343651000
0	0.065884000	-2.283750000	-3.450067000
S	-0.071634000	-0.955145000	1.287258000
Н	0.160877000	0.102387000	-4.148949000
Н	-0.028864000	-2.326734000	-0.907656000
Н	0.171120000	2.071295000	-2.840678000
С	0.068911000	2.172392000	-0.031776000
Н	0.051291000	1.883901000	1.021550000
Н	0.963384000	2.787636000	-0.202208000

Η	-0.805063000	2.810502000	-0.224085000
4tT	$^{3}\pi_{56}\pi_{8}^{*}$		
Ν	-0.007897000	0.003449000	-3.138849000
С	0.060561000	-1.317911000	-2.702264000
Ν	0.129645000	-1.427076000	-1.328102000
С	0.134214000	-0.356947000	-0.410002000
С	0.063924000	0.931451000	-0.896183000
С	-0.010393000	1.115394000	-2.313524000
0	0.058805000	-2.265712000	-3.468193000
S	0.234705000	-0.828875000	1.290460000
Н	-0.059536000	0.102922000	-4.144024000
Η	0.182756000	-2.369731000	-0.966632000
Η	-0.068447000	2.083442000	-2.789197000
С	0.062973000	2.160690000	-0.031053000
Η	-0.832704000	2.765299000	-0.222737000
Η	0.089758000	1.902983000	1.027936000
Η	0.931492000	2.792472000	-0.258194000
4tT	$^{3}n_{8}\pi_{8}^{*}$		
Ν	0.131918000	-0.009530000	-3.151139000
С	0.067523000	-1.313770000	-2.707811000
Ν	0.001386000	-1.422651000	-1.322631000
С	0.000053000	-0.340545000	-0.430583000
С	0.066421000	0.953531000	-0.939521000
С	0.132295000	1.112140000	-2.315332000
0	0.067334000	-2.285470000	-3.445001000
S	-0.087096000	-0.753112000	1.283355000
Η	0.179462000	0.091525000	-4.154685000
Η	-0.044949000	-2.375469000	-0.990263000
Η	0.185386000	2.074270000	-2.804420000
С	0.067315000	2.152347000	-0.023806000
Η	-0.842894000	2.192449000	0.587447000
Η	0.923888000	2.134497000	0.661577000
Η	0.121814000	3.081635000	-0.597743000
24d	tT_S ₀		
Ν	0.132107000	-0.004336000	-3.136272000
С	0.066332000	-1.305408000	-2.699953000
Ν	0.001507000	-1.404292000	-1.331887000
С	-0.004356000	-0.379511000	-0.388498000
С	0.067819000	0.961417000	-0.944304000
С	0.132980000	1.083985000	-2.296527000
S	0.064619000	-2.612360000	-3.730589000
S	-0.089448000	-0.747067000	1.230946000
Η	0.181319000	0.115387000	-4.139726000

Η	-0.048310000	-2.349349000	-0.963578000
Н	0.189088000	2.047164000	-2.792141000
С	0.069138000	2.159077000	-0.039466000
Н	-0.834392000	2.180120000	0.579275000
Н	0.918656000	2.124485000	0.651179000
Η	0.122797000	3.086450000	-0.618362000
24dt	$T_{1}n_{8}\pi_{8}*$		
Ν	0.130937000	-0.029926000	-3.132042000
С	0.065088000	-1.316769000	-2.696389000
Ν	-0.000635000	-1.438515000	-1.325314000
С	-0.002588000	-0.363012000	-0.424215000
С	0.065383000	0.929273000	-0.921631000
С	0.133362000	1.093934000	-2.304505000
S	0.063777000	-2.643410000	-3.712129000
S	-0.093608000	-0.805886000	1.284760000
Н	0.179974000	0.077880000	-4.136106000
Н	-0.048404000	-2.390375000	-0.987986000
Н	0.189197000	2.052802000	-2.798426000
С	0.066160000	2.119428000	0.002179000
Н	-0.843570000	2.149607000	0.614587000
Н	0.922980000	2.092798000	0.686848000
Н	0.119318000	3.054401000	-0.562699000
24dt	$T_{1}\pi_{7}\pi_{8}$ *		
Ν	0.132205000	-0.031058000	-3.154912000
С	0.065937000	-1.244782000	-2.650144000
Ν	0.001794000	-1.416230000	-1.360421000
С	-0.004403000	-0.321801000	-0.346785000
С	0.067145000	0.960515000	-0.938523000
С	0.134788000	1.141921000	-2.301689000
S	0.064603000	-2.674479000	-3.759566000
S	-0.091907000	-0.801552000	1.264362000
Η	0.180171000	0.065605000	-4.158031000
Н	-0.048192000	-2.355434000	-0.981010000
Η	0.192082000	2.086767000	-2.817081000
С	0.069283000	2.163998000	-0.038986000
Η	-0.833555000	2.171975000	0.581263000
Η	0.916893000	2.115735000	0.653286000
Н	0.123011000	3.094581000	-0.611668000
24dt	$T_{3}\pi_{8}\pi_{8}^{*}$		
С	-0.678646000	-1.371557000	-0.052004000
С	-1.026791000	-0.044737000	0.075707000
С	1.345487000	0.666382000	-0.003533000
С	0.715093000	-1 695036000	-0 158260000
	0.715055000	1.0/2020000	0.100200000

Ν	0.007337000	0.920920000	0.094551000	
Н	-0.258238000	1.892618000	0.188157000	
Ν	1.642857000	-0.669058000	-0.128474000	
Н	2.631800000	-0.872563000	-0.202902000	
S	-2.658770000	0.602200000	0.221817000	
S	2.527021000	1.845722000	0.022968000	
С	-1.663262000	-2.503811000	-0.087735000	
Н	-2.688535000	-2.145028000	0.003583000	
Н	-1.568256000	-3.063727000	-1.027133000	
Н	-1.462993000	-3.210573000	0.727927000	
24dtT	$^{3}n_{8}\pi_{8}^{*}$			
Ν	0.130995000	-0.030711000	-3.130938000	
С	0.065419000	-1.318999000	-2.694813000	
Ν	-0.000746000	-1.444274000	-1.328229000	
С	-0.002622000	-0.368861000	-0.420196000	
С	0.065251000	0.928701000	-0.921222000	
С	0.132358000	1.092766000	-2.296109000	
S	0.064118000	-2.642191000	-3.716575000	
S	-0.091460000	-0.796190000	1.284768000	
Н	0.179934000	0.079503000	-4.134210000	
Н	-0.049089000	-2.398026000	-0.997034000	
Н	0.187800000	2.052969000	-2.787762000	
С	0.066200000	2.121539000	0.000127000	
Н	-0.844467000	2.155457000	0.610886000	
Н	0.922148000	2.096265000	0.685886000	
Н	0.121533000	3.054280000	-0.567649000	