Multi-molar CO₂ capture beyond the direct Lewis acid-base interaction mechanism

Chenchen Li,^{*a*} Dongmei Lu,^{**b*} and Chao Wu^{**a*}

^a Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.

^b Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

*corresponding. lvdongmei@mail.xjtu.edu.cn, chaowu@mail.xjtu.edu.cn

Supporting Information

Contents

Figure S1 Structures of reported ionic liquids
Figure S2 Structures of cations and anions studied in this work
Figure S3 Stable structures of $\mathrm{IL}\text{-}\mathrm{CO}_2$ complexes identified by the configuration search
program4
Figure S4 NBO and NRT analyses of IL-CO ₂ complexes
Figure S5 Configurations of the CO ₂ absorptions over [P ₂₂₂₂][2-Op]5
Figure S6 The interconversion energetics between ion pair and ylide intermediate of $[P_{2222}][2-$
Op] by the IRC method
Figure S7 Comparison of anion- and ylide-mediated reactions of CO2 with [Mmim][2-
Op]6
Figure S8 Configurations of the CO ₂ absorptions over [Mmim][2-Op]6
Figure S9 Comparison of anion- and ylide-mediated reactions of CO2 with [Mpr][2-
Op]7
Figure S10 Configurations of the CO ₂ absorptions over [Mpr][2-Op]7
Figure S11 Configurations of $[P_{2222}][2-Op]-2CO_2$ complexes through two ways of post proton
transfer routes
Figure S12 Configurations of the CO ₂ absorptions over [P ₂₂₂₂][2-Op] dimer
Figure S13 Comparison of anion- and ylide-mediated reactions of CO ₂ with [Mmim][2-Op]
dimer
Figure S14 Configurations of the CO ₂ absorptions over [Mmim][2-Op] dimer9
Figure S15 Configurations of the CO ₂ absorptions over [Mpr][2-Op] dimer10
Figure S16 Comparison of most stable ylide-mediated configurations using the monomer and
dimer models10

Figure S1. Structures of recently reported ionic liquids in Table 1 of manuscript.

Figure S2. Cations and anions studied in this work.

Figure S3. Stable structures of $IL-CO_2$ complexes identified by the configuration search program. The name and the binding energy or the relative binding energy with respect to the most stable one (in kJ/mol) are given below each configuration. Red is oxygen, blue is nitrogen, orange is phosphorous, gray is carbon and white is hydrogen.

Figure S4. NBO and NRT analyses of IL-CO₂ complexes. Leading Lewis resonance structures and their abundance of the corresponding complexes are plotted. Each half circle represents a pair of electrons and formal charges are placed above the corresponding atoms. The NBO decomposition of the N-C bond of $[P_{2222}][2-Op]$ is highlighted in red box.

Figure S5. Configurations of the CO_2 absorptions over $[P_{2222}][2-Op]$.

Figure S6. The interconversion energetics between ion pair and ylide intermediate of $[P_{2222}][2-Op]$ by the IRC method. Key structures are labeled and plotted. The electronic energy of ion pair $[P_{2222}][2-Op]$ is chosen as reference point. The transferring proton is highlighted.

Figure S7. Comparison of conventional anion-mediated (in blue box) and proton transfer related (in orange boxes) reactions of CO₂ with [Mmim][2-Op]. The name and relative energies are given (in kJ/mol).

Figure S8. Configurations of the CO₂ absorptions over [Mmim][2-Op].

Figure S9. Comparison of conventional anion-mediated (in blue box) and proton transfer related (in orange boxes) reactions of CO₂ with [Mpr][2-Op]. The name and relative energies are given (in kJ/mol).

Figure S10. Configurations of the CO₂ absorptions over [Mpr][2-Op].

Figure S11. Configurations of $[P_{2222}][2-Op]-2CO_2$ complexes through two ways of post proton transfer routes. The name and sequential binding energies are given (in kJ/mol).

Figure S12. Configurations of the CO_2 absorptions over $[P_{2222}][2-Op]$ dimer.

Figure S13. Comparison of conventional anion-mediated (in blue box) and proton transfer related (in orange boxes) reactions of CO_2 with [Mmim][2-Op] dimer. The name and relative energies are given (in kJ/mol).

Figure S14. Configurations of the CO₂ absorptions over [Mmim][2-Op] dimer.

FigureS15. Configurations of the CO₂ absorptions over [Mpr][2-Op] dimer.

Figure S16. Comparison of most stable ylide-mediated configurations using the monomer and dimer models. Key intermolecular hydrogen bonds are labelled.