SUPPORTING INFORMATION

Gas phase reactions of iodide and bromide anions with ozone:

evidence for stepwise and reversible reactions

Mahendra Bhujel,^a David L. Marshall,^a Alan T. Maccarone,^b Benjamin I. McKinnon,^b Adam J. Trevitt,^b Gabriel R. Da Silva,^c Stephen J. Blanksby^{*a} and Berwyck L. J. Poad^{*a}

^aCentral Analytical Research Facility, Institute for Future Environments, Queensland University of

Technology, Brisbane QLD 4001, Australia

^bSchool of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW

2522, Australia

^c Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.

Table of Contents:

Figure S1:	Comparison of mass spectrometric synthesis for IO_x^{-}	Page S2
Figure S2:	Mass spectrum of the reaction of IO_3^- with oxygen	Page S2
Figure S3:	Mass spectra and kinetic traces for the ⁸¹ Br ⁻ bromide isotope reacting with ozone	Page S3
Figure S4:	Photodissociation of IO_x^{-} (x = 1-3) at 500 and 266 nm	Page S3
Table S1:	Ozone concentrations within the ion trap determined from reactions of Ba ⁺ and phenide charge exchange.	Page S4
Figure S5:	Example mass spectrum and kinetic trace for Ba+ reacting with ozone	Page S4
Figure S6:	Example mass spectrum and kinetic trace for phenide anion reacting with ozone	Page S5

Figure S1: Comparison of three methods for synthesising IO_x^- intermediates from a solution of NaIO₄ in methanol: (A) Source-based collisional activation with 75 eV activation energy; (B) photodissociation of mass selected IO_4^- (m/z 191) with a single pulse of 266 nm laser radiation; (C) ion-trap collisional activation of mass selected IO_4^- (m/z 191) with a Normalised Collision Energy of 30 (arb. units).

Figure S2: Reaction of IO_3^- (m/z 175) with ozone for 5 s. No reaction products are observed that correspond to further oxidation to form IO_4^- (m/z 191), nor back reactions to lower oxides.

Figure S3: Mass spectra and kinetic traces for the companion bromide isotope ⁸¹Br⁻ reacting with ozone. A) Mass spectrum of ⁸¹Br⁻ (m/z 81) reacting with ozone at 20 s reaction time, (**B**) kinetic plot showing decay of ⁸¹Br⁻ and growth of BrO₃⁻ (m/z 129), (**C**) Mass spectrum of ⁸¹BrO⁻ (m/z 97) reacting with ozone for 40 ms, (**D**) associated kinetic plot showing decay of m/z 97, growth and subsequent decay of m/z 113 and ultimate growth of m/z 129, (**E**) Mass spectrum of ⁸¹BrO₂⁻ (m/z 113) reacting with ozone for 100 ms, (**F**) associated kinetic plot showing decay of m/z 113 and growth of m/z 129. Arrows in the lower panels indicate the time points mass spectra are taken from.

Figure S4: Comparison of the photodissociation products from a single pulse of 500 nm radiation from mass selected (A) $IO^-(B)$ IO_2^- and (C) IO_3^- compared to 266 nm photodissociation from mass selected (D) $IO^-(E)$ IO_2^- and (F) IO_3^- . All precursors were synthesised using Source CID set to 75 eV (see Figure S1A). Note the different magnification factors used in each spectrum.

Table S1: Comparison of two independent ion-molecule reactions for the experimental determination of ozone concentration in the ion-trap. Literature value for Ba⁺ was taken from Feil et al., J. Phys. Chem. A. **2007**, 111, 13397-13402. The charge exchange reaction between phenide $(C_6H_5^-)$ anion and ozone was assumed to be collision limited, and the trajectory collision rate at 320K was used.

Figure S5: Mass spectrum and kinetic trace for the reaction of barium cation (Ba+; m/z 138 green circles in kinetc trace) with ozone, producing charged products BaO⁺ (m/z 154; black squares in kinetic trace) and BaO₂⁺ (m/z 170)

Figure S6: Mass spectrum and kinetic trace for the charge exchange reaction between phenide anion (m/z 77) and ozone producing charged products corresponding to O_3^- (m/z 48) and $C_6H_5O^-$ (m/z 93).