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I. Rotation matrix

We use the definition of the three Euler angles ϕ, θ and ψ following Ref. [1]. The com-

ponents of any vector W in the body-fixed coordinate system (BCS) and in the laboratory

coordinate system (LCS) are determined from the relation WBCS = R ·W, where R is the

rotation matrix. The rotation matrix is expressed explicitly via the Euler angles [2]

R =




cϕcψ − sϕsψcθ sϕcψ + cϕsψcθ sψsθ

−cϕsψ − sϕcψcθ −sϕsψ + cϕcψcθ cψsθ

sϕsθ −cϕsθ cθ


 ,

where we use the compact notation, sψ = sinψ, cθ = cos θ, etc.

II. Planar symmetric V-shape propeller

As an example, we consider the V-shape propeller with 120◦ central angle with the arm

width-to-height aspect ratio w : h = 2 : 1. It is shown in Figs. S1a,b along with the principal

a) b)

FIG. S1. The symmetric planar V-shape propeller has a central angle of 120◦, the cross-section

aspect ratio 2:1 and it is magnetized a) off-plane (Φ = π/4, α = 0) and b) in-plane (Φ = π/4,

α = π/2).

axes of rotation {e1, e2, e3} (i.e., the eigenvectors of F). Magnetization orientation plays

a key role in propulsion. We consider the cases of off-plane and in-plane magnetization

(see Fig. S1). For the former, there are two magnetization components – along the easy

axis e3} of the body rotation and along the normal vector to the plane of the object, as

shown in Fig. S1a. For the latter, both magnetization components belong to the plane of

the V-structure (see Fig. S1b).
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Using the multipole expansion algorithm [3] we determine the coupling and rotational

mobilities of the planar propeller

G
V-shape =

10−2

ηl2




0 0 −1.058

0 0 0

−1.058 0 0


 , F

V-shape =
1

ηl3




1.067 0 0

0 1.078 0

0 0 2.945


 , (S1)

where η stands for the dynamics viscosity and ℓ = 2.732h for the propeller’s length, with

h being the V-shape thickness. The transverse rotational friction anisotropy parameter is

negligibly small, ε = (F2 − F1)/(F2 + F1) = 0.004. The longitudinal rotational anisotropy

parameter is p = F3/F⊥ = 1
2
F3(F−1

1 + F−1
2 ) = 2.743. The only non-trivial coupling coeffi-

cients are G13 = G31 = −0.01058/(ηℓ2).

The chirality matrix Ch with components Chij =
1
2ℓ
Gij(F−1

i +F−1
j ) (no summation over

the repeating indices) [4] have the form

ChV-shape = 10−2




0 0 −0.675

0 0 0

−0.675 0 0


 . (S2)

Average velocity of the symmetric V-shape propeller

In the laboratory frame the propulsion velocity of the driven object reads

U = R+ · G ·F−1 ·Ω , (S3)

where R+ is the transposed rotation matrix, G and F are the coupling and rotation F

viscous mobility tensors and Ω is its angular velocity. For planar symmetric V-shaped

propeller the only nontrivial elements of the coupling matrix are G13 = G31 (see Eq. (S1)).

Then the velocity components (S3) take the form:

UX
G13

=
[
sϕsψ

(
s2θF−1

1 − c2θF−1
3

)
+ cϕcψF−1

3

]
ϕ̇+ (cϕcψ − sϕsψcθ)F−1

3 ψ̇ + sϕcψsθF−1
1 θ̇ ,(S4)

UY
G13

=
[
cϕsψ

(
c2θF−1

3 − s2θF−1
1

)
+ sϕcψF−1

3

]
ϕ̇+ (sϕcψ + cϕsψcθ)F−1

3 ψ̇ − cϕcψsθF−1
1 θ̇ ,(S5)

UZ
G13

= sψsθcθ
(
F−1

1 + F−1
3

)
ϕ̇+ sψsθF−1

3 ψ̇ + cψcθF−1
1 θ̇ . (S6)
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In the tumbling and low-frequency wobbling regimes, the orientations are expressed as

the asymptotic series in powers of the parameter δ (see Eqs. (11)-(13) in the main text):

θ = θ0 + (Acωt +Bsωt)δ + θ2δ
2 , (S7)

ϕ = ωt+ ϕ0 + (Ecωt + Fsωt)δ + ϕ2δ
2 , (S8)

β = β0 + (Gcωt +Hsωt)δ + β2δ
2 . (S9)

The Euler angle ψ entering the velocity equations (S4)-(S6) and the angle β in the orien-

tation expansions (S7)-(S9) are related as β = ψ+ α, where α is the azimuthal angle of the

propeller magnetic momentm in the body frame: mBCS = m(sin Φ cosα, sin Φ sinα, cosΦ) .

For α = 0 and 0 < Φ < π/2 the V-shaped propeller is magnetized off-plane as shown in

Fig. S1a, while for α = π/2 and 0 < Φ < π/2 it is magnetized in-plane, see Fig. S1b. Here

we consider an arbitrary value of the angle α.

In the tumbling regime, ω̃ < ω̃t-w, the coefficients in expansions (S7)-(S9) are (see

Sec. III.A of the main text)

A = B = G = H = θ2 = β2 = 0, E = 2ω̃
√
1− ω̃2, F = 2ω̃2 − 1, ϕ2 = −3

4

ω̃√
1− ω̃2

. (S10)

Substituting the expansions (S7)-(S9) into Eqs. (S4)-(S6) and averaging over the field period

with the help of Eq. (S10) yields a zero value of the propulsion velocity U .

In the low-frequency wobbling regime the coefficients in expansions (S7)-(S9) are given

in Eqs. (17) of the main text:

A = −2ω̃(p− 1)
[
ω̃2 + (p− 1)c2Φ

]
cΦcθ0/∆ ,

B = ω̃2p(p− 1)s2Φcθ0cβ0/∆ ,

E = Bω̃p/[(p− 1)cΦcθ0] , (S11)

F = −1 −Aω̃p/[(p− 1)cΦcθ0 ] ,

G = −Bω̃/cΦ ,

H = Aω̃/cΦ ,

where ∆ = c4Φ(p−1)2− c2Φω̃
2(p−1)2+ ω̃2p2 . Substitution of expansions (S7)-(S9) and (S11)

into Eqs. (S4)-(S6) followed by averaging over the field period leads to the net translation
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of the object with velocities:

UX = δBU0 , UY = −δAU0 ,

U0 = ωℓCh13s2θ̄sβ̄−α , (S12)

UZ = U0 + ωℓCh13(p− 1)s2θ̄

(
∆4

∆
sβ̄cα −

∆5

∆
cβ̄sα

)
δ2 ,

where

∆4 = 2c4Φ(p− 1) + c2Φω̃
2(p2 + 1)− ω̃2(p2 + pω̃2 − ω̃2) , (S13)

and

∆5 = ∆4 − p2ω̃2s2Φ . (S14)

The expressions (S12) determine the velocity of symmetric V-shape propeller in the low-

frequency wobbling regime. For the particular cases of the off-plane and in-plane magne-

tization, depicted in Fig. S1a, and b, the expression in (S12) reduce to simpler equations

(34)-(37) of the main text.

III. 2-turn helical propeller

Consider now the 2-turn magnetic helix with the 45◦ pitch angle, as shown in Fig. S2.

FIG. S2. The two-turn magnetic helix with the 45◦ pitch angle.
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The viscous mobility coefficients of the helix were reported in [4]:

G
helix =

10−1

ηl2




0 0 0.404

0 −0.154 0

0.404 0 2.333


 , F

helix =
1

ηl3




1.925 0 0

0 1.949 0

0 0 18.985


 . (S15)

The characteristic longitudinal swimmer size, ℓ = 30.8r, where r is the radius of the filament

cross-section. The longitudinal and transverse rotational friction anisotropy parameters are

p = 9.803, ε = 0.006. The chirality matrix Ch is given by

Chhelix = 10−2




0 0 1.155

0 −0.788 0

1.155 0 1.229


 . (S16)

Average velocity of the helix

In this section we consider the propulsion of a helix with arbitrary azimuthal angle α

of magnetic moment and characterized by four nonzero coupling coefficients: G22, G33 and

G13 = G31. Since U in Eq. (S3) is proportional to G, there are three contribution to the

propulsion velocity of such a helix:

U
helix = U1 +U2 +U3 , (S17)

where U1 ∼ G13, U2 ∼ G22 and U3 ∼ G33. The explicit relations for the components of U1

are given by Eqs. (S4)-(S6). The components of U2 and U3 follow from expression (S3) and

they read:

U2,X

G22

= −(cϕsψ + sϕcψcθ)F−1
2 (cψsθϕ̇− sψθ̇) , (S18)

U2,Y

G22

= (−sϕsψ + cϕcψcθ)F−1
2 (cψsθϕ̇− sψ θ̇) , (S19)

U2,Z

G22

= cψsθF−1
2 (cψsθϕ̇− sψ θ̇) , (S20)

U3,X

G33
= sϕsθF−1

3 (cθϕ̇+ ψ̇) , (S21)

U3,Y

G33
= −cϕsθF−1

3 (cθϕ̇+ ψ̇) , (S22)

U3,Z

G33
= cθF−1

3 (cθϕ̇+ ψ̇) , (S23)
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The average value of the helix translation velocity equals to a sum of average contributions

U
helix

= U 1 +U 2 +U 3 , (S24)

Below we present the average velocity U
helix

of a helix in three regimes – tumbling, low-

frequency wobbling and high-frequency wobbling.

A. Tumbling regime

In the tumbling regime, ω̃ < ω̃t-w, substituting the expansions (S7)-(S9) into Eqs. (S4)-

(S6), (S18)-(S20), and (S21)-(S23) and averaging over the field period with the help of

Eq. (S10) leads to

U 1 = U 3 = 0 , U 2 = Ch2c
2
αωℓk , (S25)

where k is the unit vector along the Z-axis.

B. Low-frequency wobbling regime

In this case we substitute the expansions (S7)-(S9) into Eqs. (S4)-(S6), (S18)-(S20), and

(S21)-(S23), but use the different relation (S11) for the coefficients. In this way we find:

UX = δBU0 , UY = −δAU0 ,

U0 = ωℓ
[
Ch13s2θ̄sβ̄−α + Ch2s

2
θ̄c

2
β̄−α + Ch3c

2
θ̄

]
, (S26)

UZ

ωℓ
=
U0

ωℓ
+
δ2(p− 1)

∆

[
Ch13s2θ̄

(
∆4

∆
sβ̄cα −

∆5

∆
cβ̄sα

)
+

+Ch2s
2
θ̄{c2β̄∆6 + sβ̄cβ̄s2α∆8 + s2β̄s

2
α∆9}+ Ch3c

2
θ̄∆7

]
,

where

∆6 = 2(p− 1)
(
c4Φ − ω̃4

)
,

∆7 = 2c2Φ
[
c2Φ(p− 1) + ω̃2

]
,

∆8 = ∆4 − ω̃2[c2Φ + (p− 1)ω̃2] , (S27)

∆9 = −2[(p−1)(p2−2)c4Φ+(p3ω̃2−p3−2p2ω̃2+p2)c2Φ− ω̃2(p3−2p2−2pω̃2+2ω̃2)] , (S28)
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with the parameters ∆4 and ∆5 given earlier in Eqs. (S13) and (S14). The average values

of θ̄ and β̄ are reported in the main text (see Eqs. (19) and (20)):

θ = arcsin
[
cΦ
ω̃

(
1 + δ2{1

4
+ ∆2

∆
ω̃2}

)]
, (S29)

β = − arcsin
[
c
θ̄
ω̃

psΦ

(
1− δ2{1

4
+ ∆3

∆
pω̃2}

)]
, (S30)

(S31)

with

∆ = c4Φ(p− 1)2 − c2Φω̃
2(p− 1)2 + ω̃2p2 , (S32)

∆2 = (p− 1)c2Φ − 2p2 + ω̃2(p2 − p+ 1) , (S33)

and

∆3 = p(p− 1)c2Φ − p(p+ 1) + ω̃2 . (S34)

In the particular case of the planar object with zero diagonal elements Ch2 = Ch3 = 0,

the relations (S26) reduce to these in Eqs. (S12).

C. High-frequency wobbling regime

In the high-frequency wobbling regime the propulsion velocity is found in the following

way. First, we use the Eqs. (S4)-(S6), (S18)-(S23) for the velocity components UX , UY

and UZ in terms of three non-trivial chirality coefficients Ch2, Ch3 and Ch13. Then for the

time derivatives ϕ̇, ψ̇ and θ̇ we use their explicit dynamic relations (5)-(7) in the main text.

Retaining only the terms at zero frequency we finally obtain:

UX/ωℓ = Ch3sθ̄sϕ̄ − Ch2
1

4bω̃
s2αsΦs

2
θ̄
+ Ch13

1
(p+1)cΦω̃

[
2pc2

Φ
(1+c

θ̄
)−s2

Φ

4
bs2ϕ̄cα − p

2b
s2
θ̄
s2Φsα−

s2
Φ

2b

(
cθ̄ +

2
t2
Φ

− a2 − b2 − 1 + 2a2+b2

1+c
θ̄

)
sα − p

bc2
θ̄

((cθ̄ + 1)2 − a2)(cθ̄ − s2Φ)(cθ̄ − 1)sα

]
, (S35)

UY /ωℓ = −Ch3sθ̄cϕ̄ − Ch2
b
4ω̃
sΦ(cθ̄c2α +

1
2
s2
θ̄
s2ϕ̄s2α) + Ch13

p
(p+1)cΦω̃

(
asθ̄cϕ̄c

2
Φ − b

2
s2Φcθ̄

)
cα −

− Ch13
1

4(p+1)cΦω̃

[
{pc2

θ̄
(−3 + c2Φ) + cθ̄(2pc

2
Φ + s2Φ) + 3ps2Φ − 2c2Φ}bs2ϕ̄sα+ ,

+ {(a2 + b2)s2Φcθ̄ − 2(a2 + c2Φ) +
2a2(1+c2

Φ
)

1+c
θ̄

}2
b
cα

]
, (S36)

UZ/ωℓ = Ch3cθ̄ − Ch2
b
4ω̃
sΦsθ̄(cϕ̄c2α − sϕ̄sθ̄s2α) + Ch13

1
(p+1)cΦω̃

[
(p
2
s2Φs

2
θ̄
− c2Φ)sα−ξ̄−

−apc2Φcθ̄cα + { s
2

Φ
s2
θ̄

c
θ̄

+ (p+ 1)s2Φ − 1− pcθ̄(cθ̄ + cΦ)}cξ̄sα
]
. (S37)
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IV. When the mutual interactions among propellers are negligible?

In this section we consider the effect of the mutual magnetic and hydrodynamic interac-

tions on the micromotor dynamics and provide an estimate of their density in the swarm

for which these effects can be neglected. The consideration is done under the following

simplifying assumptions:

a) the external rotating magnetic field is symmetric (i.e, Hrot) with δ = 0;

b) we consider helical micromotors that propel without wobbling, i.e., with θ = 0 such

that the magnetic moments of all micromotors rotate in the plane of the field with its angular

frequency ω;

c) the magnetic and hydrodynamic interactions are considered separately.

1. Magnetic interactions

Two magnetic nanomotors with permanent magnetic moment m1 and m2 interact with

each other via dipolar-dipolar potential

Ud =
m1 ·m2

r3
− 3

(m1 · r)(m2 · r)
r5

, (S38)

Averaging Eq. (S38) over the period of the rotating field determines the mean value of

the potential in the form

Ud = −m1m2

2r3
[1− 3(k·n)2] , (S39)

where k is the unit vector along the Z-axis, n is the interparticle vector and n = r/r.

The magnetic interaction affects the dynamics in two ways: (i) it modifies the value of

the external rotating field Hrot in the vicinity of, e.g., propeller #2 by the value Hloc =

−∂U d/∂m2; (ii) nanopropellers in a “side-by-side” configuration attract each other and may

form an aggregate in a finite time.

The following estimates of the magnitude of the mutual magnetic interaction rely on the

data from Ref. [5] where the experiments on propulsion of a swarm of magnetic microhelices

in the vitreous body of the eye were reported. The length of the microhelix was ℓ = 2 µm

and its diameter d = 500 nm. The magnetic moment of propellers is about m ≈ 1.5 · 10−13

emu, the viscosity of the vitreous is η = 1.4 · 10−2 P, the amplitude of the rotating field is

Hrot = 25 Oe, the propulsion velocity is U = 10.6 µm/s and the characteristic time required

for the microhelices to reach the retina from the center of the vitreous is texp = 30 min.
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At the distance r ≈ 1 µm, the local magnetic field Hloc ∼ m/r3 ∼ 0.1 Oe, which is two

orders-of-magnitude lower than the external magnetic field Hrot, i.e., Hloc ≪ Hrot. Thus,

the distortion of the external magnetic field due to presence of a neighbor microhelix is

negligible already at the separation distance equal to its length, ℓ.

Let us now consider magnetic attraction of two micromotors in the plane (k ⊥ n) of the

field rotation. The balance of the magnetic and hydrodynamic forces reads

ζ⊥L
dr

dt
= −3

2

m1m2

r4
, (S40)

where ζ⊥ = 4πη/ ln(ℓ/d) is the approximate transverse drag coefficient of the slender object

[6]. Integration of Eq. (S40) yields the typical time tagg it takes for two propellers initially

separated by the distance r to aggregate. Over the time of the propulsion experiment, texp,

the field induced aggregation is negligible when the mean separation distance between the

propellers satisfy r ≫ r∗ = [15m1m2texp/(2ζ⊥ℓ)]
1/5. Substituting the above values of m,

texp, η, L, and d we find r∗ ≈ 4 µm.

Notice that the estimate is based on the implicit assumption that the propellers belong in

the same XY -plane of the field rotation at all times. Actually, the propellers exhibit some

variance of the propulsion speed related to non-uniformity of their geometry and magnetiza-

tion. According to Ref. [7], that used the same microfabrication technique was as in [5], the

standard deviation of the propulsion velocity σ = 0.2–0.3. Therefore, a weaker condition is

required in order to avoid the magnetic aggregation by requiring that the transverse velocity

due to the micropropellers’ magnetic interaction in Eq. (S40) is smaller than their relative

velocity along the Z-axis:
dr⊥
dt

< σU . (S41)

In this way we obtain a new estimate for the limiting interparticle distance

r∗,magn = [3m1m2/(2ζ⊥ℓσU)]
1/4 . (S42)

Even for quite underestimated value of the dispersion, σ = 0.05, we obtain r∗,magn ≈ 0.7 µm.

Thus, the magnetically-driven aggregation is not operable if the mean interparticle distance

exceeds r∗ ≈ 1 µm. Moreover, typically the propellers in the swarm are inherently scattered

along the Z-axis and thus their mean magnetic interaction is weaker than predicted above

for side-by-side configuration that implies the fastest aggregation dynamics.
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2. Hydrodynamic interactions

The main contributions to the hydrodynamic interaction are the driven rotation and

translation of the propellers. The rotation contributes the rotlet term (the anti-symmetric

part of the force dipole, [6]) generating the fluid flow with velocity v related to the driven

rotation with the angular velocity ω, v ∼ (R/r)3 ω × r, where R is the effective radius

of the propeller. For a slender, (e.g., helical) propeller of diameter d and length ℓ in the

tumbling regime R3 ≈ ℓ(d/2)2 and in the wobbling regime (with small θ) we have R ≈ d/2.

This flow v, however, only contributes to the rotation of a pair of propellers in the field

XY -plane and do not perturb their relative motion. As shown in Ref. [8] for the swarm

of sixteen magnetic propellers, these rotations do not affect their net motion along the Z-

axis. The hydrodynamic interactions of the propellers located in different transverse planes

perpendicular to the Z-axis proved to be negligible upon time-averaging [8]. Therefore,

below we neglect the leading-order rotlet contribution to the flow and focus on the sub-

leading term originated due to propulsion.

Since the propulsion of a propeller in the rotating magnetic field is force-free, we assume

that at some distance away from the propeller the flow v is due to the symmetric part of

the force dipole or the stresslet [6]:

v = − pn

8πηr2
[1− 3(k · n)2] , (S43)

where the dipole strength, p ∼ ηUℓ2 [9]. The effect of the hydrodynamics is similar to that

of the magnetic interactions, while, the strength of the hydrodynamic interaction in (S43)

decays slower (∼ 1/r2) than the magnitude of the magnetic interaction in (S40) (∼ 1/r4).

Similar to previous analysis, we estimate the role of the hydrodynamic interactions in two

ways. First, we consider two propellers located in the XY -plane of the field and compare

their propulsion velocity U with the magnitude of the advective flow v originated by the

nearby propeller,

v/U =
p

8πUηr2
∼ 1

8π

(
ℓ

r

)2

. (S44)

The estimate implies that the dynamics of the propeller does not change dramatically if the

reference propeller is separated by the distance r ≥ ℓ from its neighbor.

Second, let us determine the typical distance r∗,hyd at which the advective velocity v is

11



equal to the relative velocity σU of propellers moving along the Z-axis. For r∗,hyd we find

r∗,hyd =
ℓ√
8πσ

. (S45)

For the experimentally observed dispersion σ = 0.2–0.3 and ℓ = 2 µm we have r∗,hyd ≈ 0.9

µm.

Combining the both considerations of magnetic and hydrodynamic interactions one can

conclude that they can be safely neglected given that the mean inter-particle distance in the

swarm satisfy r ≈ 2 µm. This estimate corresponds to the average motor number density

n < n∗ ∼ 1017 m−3.
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