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Fig.S1. The side view (a) and top view (b) of DCP dimers in different configurations.

Fig.S2. The total energy changes with dilation (Δl/l0) along x and y direction in DCP1L/G 

heterojunction.
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Fig.S3. The linear fitting of CBM and VBM changes with the strain along x and y direction in 

DCP1L/G heterojunction.
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Fig.S4. Then bandstructure of the DCP1L/G heterojunction.
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Fig.S5. The dependence of electronic couplings between DCP 1 and 2 in DCP2L/hBN 

heterojunction on the distances between DCP 1 and graphene.



Table S1. The calculated distances (d0) and binding energies (ΔEb0) between DCP molecule 

and graphene for different configurations. These sites include the top sites with all or half of 

the molecular carbon atoms atop of graphene carbon atoms (a and c), the hollow site with all 

the molecular carbon atoms at hollow sites of graphene rings (b) and the bridges site with half 

of the molecular carbon atoms atop of the middle site of C-C bonds in graphene (d). Besides, 

we have also considered the configuration when the molecule is along the armchair direction 

of graphene (e).

(a) (b) (c) (d) (e)
d0 (Å) 3.519 3.483 3.480 3.487 3.518

ΔEb0 (eV) -1.417 -1.476 -1.490 -1.475 -1.450

Table S2. The calculated binding energies (eV/molecule), length of C-H‧‧‧Cl bond (Å) and 

inter-distances (Å) between DCP layer and graphene in DCP1L/G composites with different 

graphene size.

unit cell size (5×4) (6×4) (7×4)

ΔE
b1

 (eV/molecule) -1.687 -2.016 -1.930

Configuration unparalleled paralleled paralleled

Length of CH‧‧‧Cl 
(Å)

2.740 3.319 4.433

d (Å) -- 3.493 3.495



Table S3. The calculated binding energies (eV/molecule) and inter-distances (Å) between 

PTCDA molecule (layers) and graphene in PTCDA/graphene heterojunctions.

Single PTCDA on G PTCDA1L/G PTCDA2L/G

ΔEb0 d0 ΔEb1 d ΔEb2 d1 d2

-1.955 3.418 -2.406 3.442 -2.062 3.423 3.448

Table S4. The calculated binding energies (eV/molecule) and inter-distances (Å) between 

DCP molecule (layers) and hBN in DCP/hBN composites.

Single DCP on hBN DCP1L/hBcN DCP2L/hBN

ΔEb0 d0 ΔEb1 d ΔEb2 d1 d2

-1.530 3.515 -1.599 3.509 -1.228 3.507 3.565


