Electronic Supplementary Information

Reactions of the radiation-induced electrons with carbon dioxide in inert cryogenic films: matrix tuning of the excess electron interactions in solids

Ekaterina S. Shiryaeva, Irina A. Baranova, Daniil A. Tyurin, Vladimir I.

Feldman*

Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

*Corresponding author e-mail: feldman@rad.chem.msu.ru (V.F.)

Table S1. Absorption maxima (wavenumber, cm^{-1}) observed after deposition of different inert matrices doped with CO₂. The bands assigned to dimer are in italics.

	No	A	Va	Xe N ₂	Literature data		
	INE	Ar	ле		Ne ^a	Ar ^{b,c}	$N_2{}^b$
			¹² CO ₂				
v_1+v_3		3708.0-	3697.4-			3706.8-	3714.5-
		3700.4	3692.0			3699.5	3711.6
1		3602.6-	3592.7-			3602.9-	3609.1-
202+03		3597.4	3587.9			3596.9	3607.0
	2347.8	2345.5	2336.0		2347.6	2347.7	2349.0
						2345.0	2351.1
						2344.8	2349.2
						2342.0	
03						2340.2	
						2339.0	
						2239.9	
						2339.1	
	667.8	663.2	659.2		668.2	664.4	662.3
	664.6	654.9			667.2	663.8	
						663.7	
υ_2						663.5	
						663.4	
						661.9	
						659.9	
			1	³ CO ₂			
n,+n,	3631.5-	3627.6-	3616.0-	3632.6		3626.9-	3632.2
	3628.7	3618.7	3613.0			3618.4	
	3526.6-	3515.9–	3503.7-	3520.5		3515.8-	3520.3
$2v_2+v_3$	3524.1	3511.4	3503.5			3511.9	
	3510.1						
	2281.8	2279.6	2271.7	2283.2	2281.8	2282.0	2283.1
Da	2272.8	2274.3	2269.3	2273.9		2279.2	2285.2
	2264.6	2268.5	2254.4	2265.7		2278.5	2282.3
	2276.8	2262.1	2252.0			2276.5	
03	2261.0	2256.4				2274.7	
						2274.5	
						2273.7	
						2273.6	
υ_2	648.9	644.2	642.7	643.5	649.1	645.5	643.5

641.0	638.4	640.6	648.7	645.0	
636.0		637.2		644.8	
				644.6	
				644.5	
				643.2	
					641.2

Taken from: ^{*a*} M. Zhou and L. Andrews, *J. Chem. Phys.*, 1999, **110**, 6820–6826.

^b M. Zhou and L. Andrews, J. Chem. Phys., 1999, **110**, 2414–2422.

^c A.Schriver, L. Schriver-Mazzuoli and A. A. Vigasin, Vib. Spectrosc., 2000, 23, 83-94.

Figure S1. Fragments of difference FTIR spectrum of ${}^{12}CO_2/Ne$ (1/1000) sample showing the effect of the irradiation with X-rays to the absorbed dose of 9.7 kGy.

Figure S2. Fragments of FTIR spectra of ${}^{12}CO_2/N_2$ (1/1000) system after deposition (black line), irradiation with X-rays to the absorbed dose of 3.2 kGy (red line) and subsequent photolysis at 400 nm (blue line) at 6 K.

Figure S3. Fragments of FTIR spectra of ${}^{12}CO_2/Ar$ (1/300) matrix after deposition (black line) and irradiation with X-rays to the absorbed dose of 41.4 kGy (red line) at 6 K.

Figure S4. Fragments of FTIR spectra of ${}^{12}CO_2/Xe$ (1/300) matrix after deposition (black line) and irradiation with X-rays to the absorbed dose of 42 kGy (red line) at 6 K.

	This	Literature data ^{<i>a,b,c,d</i>}
	work	
	2894.8	2894.6
	1658.2	1658.2
		1657.4
	1632.2	1630.6
¹² CO ₂ -	1628.2	1629.8
	1253.2	1253.8
		1252.7
		514.0
		714.2
		713.6
	1864.0	1864.2
	1862.2	1862.0
	1855.2	1854.9
	1852.5	1852.4
${}^{12}C_{2}O_{4}$		1850.7
		1190.0
	1189.0	1189.2
	1186.1	1186.0

Table S2. Absorption maxima (wavenumber, cm^{-1}) of the bands of monomer and dimer CO_2 radical anions and their complexes isolated in a neon matrix.

	This work	Literature data ^{<i>a,b,c,d</i>}
		1185.6
	1184.1	1183.7
		674.0
		679.2
	2326.2	2326.7
	2322.1	2322.1
		2320.3
$({}^{12}\text{CO}_2)_{n}$ $({}^{12}\text{CO}_2)^{-}$	1669.3	1670.2
	1665.6	1665.5
		1654.6
	1650.4	1650.6
	1895.3	1895.2
¹² CO ₂ O ₂ ⁻	1256.6	1256.5
		697.1
	2835.1	2835.0
	1614 2	16141
	1014.5	1014.1
		1013.3
¹³ CO ₂ -•		1228.2
		1238.2
	1237.0	1237.3
		702.0
		703.0
		/02.4
	1010.0	1814.0
	1812.2	1812.0
	1804.3	1803.1
		1801.0
		1182.2
¹³ C ₂ O ₄ -		
	1180.6	1181.4
	1178.7	1178.4
	1177.0	1176.4
		664.8
		2261.5
		2257.0
		2255.3
(¹³ CO ₂) _n (¹³ CO ₂)		1625.7
	1621 4	1621.2
	1021.4	1610.7
	1(07.0	1607.0
	1607.0	1000.0
	1832.8	1832.8
¹³ CO ₂ O ₂ -		1835.6
2 2	1247.5	1247.6
	1 ***	<u>686.4</u>
ken from: a M. E. Ja	acox and W.	E. Thompson, J. Chem.

Computational details and results

Molecular geometries were fully optimized (tolerance on gradient: 10^{-7} a.u.) at the UCCSD(T)/L4a_3 level of theory (only the valence electrons are correlated).

Table S3. Contraction scheme of the augmented correlation consistent valence basis set L4a 3 as compared to the aug-cc-pV5Z basis set

Basis	C, O, atoms contraction scheme
L4a_3	{7s,6p,5d,4f,3g,2h}/{20s,14p,8d,6f,5g,4h}
aug-cc-pV5Z	{7s,6p,5d,4f,3g,2h}/{15s,9p,5d,4f,3g,2h}

Computed structures and energies

```
CO_{2}, D_{\infty h}

$molecule

cartesian

set=L4a_3

6 0.00000000 0.00000000 0.00000000

8 0.00000000 0.00000000 1.16205294

8 0.00000000 0.00000000 -1.16205294

$end

E = -188.4073511295 a.u
```

CO_{2}^{-}, C_{2v}

\$molecule
charge=-1 mult=2
cartesian
set=L4a_3
6 0.00000000 0.00000000 0.30781622
8 1.14630447 0.00000000 -0.15390811
8 -1.14630447 0.00000000 -0.15390811
\$end
E = -188.3824204485 a.u.

<u>**Table S4.**</u> Calculated geometrical parameters of CO_2 and its radical anion

Molecule	CO bond length, A	OCO angle, degree
CO_2	1.16205	180.000
CO ₂ -	1.14630	136.121