Supplementary Information for:

Kinetic modelling of intraband carrier relaxation in bulk and nanocrystalline lead-halide perovskites

Thomas R. Hopper^{a†}, Ahhyun Jeong^{a†}, Andrei A. Gorodetsky^{a†}, Franziska Krieg^{b,c}, Maryna I. Bodnarchuk^{b,c}, Xiaokun Huang^d, Robert Lovrincic^d, Maksym V. Kovalenko^{b,c} and Artem A. Bakulin^{a*}

^a Ultrafast Optoelectronics Group, Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
^b Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1-5/10, 8093 Zurich, Switzerland
^c Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology,
Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

^d Institute for High-Frequency Technology, Technische Universität Braunschweig, Schleinitzstrasse 22, 38106,

Braunschweig, Germany

 $\ensuremath{ \dagger}$ These authors contributed equally to the manuscript

* Corresponding author: a.bakulin@imperial.ac.uk

Figure S1 Fluence-dependent pump-probe kinetics for the CsPbBr₃ NCs.

Figure S2 Plot of experimental relaxation time with respect to the hot carrier density for the CsPbBr₃ NCs, modelled without the carrier-carrier interactions.

Figure S1. Fluence-dependent pump-probe kinetics for the CsPbBr₃ *NC dropcast film. Pump: 2.5 eV, probe: 0.6 eV.*

Figure S2. Plot of relaxation time with respect to the hot carrier density directly after the push $\binom{n_0^{hot}}{0}$ and cold carrier density just before the push $\binom{n_0^{cold}}{0}$ in the CsPbBr₃ NCs. Points are experimental data and the solid lines are fits which neglect the carrier-carrier interactions.