Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting Information

Material and Methods

All the systems were recombinantly expressed using protocols previously reported.^[1–5]Although no exogenous arginine was added to the samples, previous studies indicate that both the wild-type dimer and the truncated monomer ArgBP²⁰⁻²³³ retain the ligand in the binding pocket.^[3,6] For H/D-exchange experiments, the lyophilized powder of the different variants of the protein were dialysed in D₂O using Amicon Ultra (2 mL) centrifugation units with 10 kDa cutoff and subsequently lyophilized. 50 mM Tris buffer was chosen for the Fourier-transform infrared (FTIR) spectroscopy measurements. The pD value was adjusted to 7.5 (pH +0.4 = pD) by adding DCl or NaOD.

The measurements were performed using a MAGNA 550 (Thermo Fisher Scientific) equipped with a liquid-nitrogen cooled MCT-detector (HgCdTe). Details of the system were described elsewhere.^[7] Owing to the pressure-sensitive stretching vibration of SO₄²⁻ (983.5 cm⁻¹ \triangleq 1 bar), BaSO₄ was used as an internal pressure standard.^[8] A protein concentration of 50 mg mL⁻¹ was used for each measurement. The spectra were averaged over 128 scans in a row by using Omnic 7.2 spectral processing software. The resolution was set at 2 cm⁻¹ and the temperature (25 °C) was measured with a digital thermometer placed in the sample cell with an accuracy of ± 0.2 °C. The spectra obtained were processed and analysed with Thermo Grams 8.0 software as follows: After buffer subtraction and smoothing, the area of the amide I' band (1700-1600 cm⁻¹) was normalized to 1. Peak numbers and peak positions for fitting of the subbands were obtained from the maxima of the Fourier self-deconvolution (FSD, Gamma factor: 13) and minima of the 2nd derivative spectra (derivative: 2nd, degree: 3, points: 11) approaches. FSD is a mathematical procedure for reducing bandwidth in order to resolve overlapping bands from each other. In order to counteract the spectral noise, the deconvolution is further multiplied by a smoothing function (smoothing: 65%).^[9] Here, the amide I' band region of the different kinds of ArgBP can be decomposed into seven (for the ArgBP^{D1} domain into six) subbands. The matching peak positions provide the position of the maxima of the subbands for the fitting process relatively precisely. In addition, the range of a subband position was limited to ± 2 cm⁻¹. The start parameters number, position, height and half-width of the subbands were then fixed with reasonable limits.^[10,11] To determine the relative changes in the population of secondary structure elements, mixed Gaussian-Lorentzian line shape functions were used in the fitting procedure, which were adapted to the normalized amide I' band.^[10,12] The area of each subband corresponds to the percentage of the secondary structure it is assigned to (the total amide I' band area equals 100%).^[11]

Boltzmann fits, which are based on the assumption that a two-state unfolding process of the protein takes place, to the pressure-dependent sigmoidal curve progression of the secondary structural elements were used to obtain the volume changes upon (partial) unfolding or dissociation. The pressure-induced intensity changes are given by

$$I = \frac{I_{\rm f} - I_{\rm u}}{1 + e^{-(p - p_{\rm u})} \cdot \frac{\Delta V_{\rm u}}{RT}} + I_{\rm u}$$
(1)

where I_f and I_u are the plateau values of the IR band intensities of the folded and unfolded/dissociated protein, respectively. Generally, by favoring states with a smaller partial

molar volume, pressure shifts an equilibrium towards the state with smaller overall volume, in accord with Le Châtelier's principle. The effect of pressure on any chemical equilibrium or conformational transition is given by

$$\left(\frac{d\ln K}{dp}\right)_T = -\frac{\Delta V}{RT} \tag{2}$$

at constant temperature, where *K* is the pressure-dependent equilibrium constant and ΔV is the associated volume change, in our case upon protein (partial) unfolding or dissociation. Hence, the *K* values can be expected to exponentially depend on pressure, and a transition that is accompanied by a positive ΔV will be suppressed under pressure, and vice versa.

Table SI 1: Comparison of all secondary structure elements in percent of all measured ArgBP variants at 1 bar, 10 kbar and after decompression.

ArgBP	Secondary structure	~ /1	Secondary structure elements in %			
variants	element	<i>v</i> / cm ⁻¹	at 1 bar	at ~ 10 kbar	decompression	
	β-sheets or turns	1686	1	2	2	
	 β-sheets or turns 	1677	4	4	4	
	\blacktriangle β-sheets or turns	1670	7	5	5	
ArgBP ^{20_246}	▼ α-helices	1654	35	29	31	
	 intramolecular β- sheets 	1638	30	39	35	
	random coils	1643	17	14	16	
	► side chains	1615	6	7	7	
	β-sheets or turns	1686	1	1	1	
	 β-sheets or turns 	1678	4	5	4	
	\blacktriangle β-sheets or turns	1669	7	7	5	
\mathbf{A} rg $\mathbf{P}\mathbf{D}^{20}$ 233	V α-helices	1654	33	26	31	
Algoration	 intramolecular β- sheets 	1638	31	39	36	
	random coils	1643	17	14	16	
	► side chains	1615	6	8	6	
	β-sheets or turns	1680	6	5	7	
	 β-sheets or turns 	1668	9	9	8	
	V α-helices	1654	29	25	31	
ArgBP ^{D1}	 intramolecular β- sheets 	1638	30	34	27	
	random coils	1643	22	20	20	
	► side chains	1615	4	7	5	
	β-sheets or turns	1684	4	5	4	
ArgBP ^{D2}	 β-sheets or turns 	1676	2	2	2	
	\blacktriangle β-sheets or turns	1661	12	10	12	
	V α-helices	1652	26	22	26	
	 intramolecular β- sheets 	1637	37	42	37	
	random coils	1643	15	13	15	
	► side chains	1615	4	5	4	

Table SI 2: Secondary structure content of the ArgBP variants as obtained from the PDB structures.

Protein	Protein Data Bank Code	α-helix (%)	β-sheet (%)
ArgBP ²⁰⁻²⁴⁶	4PSH	38	28
ArgBP ²⁰⁻²³³	6GGV	28	23
ArgBP ^{D1}	6GPC	35	21
ArgBP ^{D2}	6GPM	29	26

ArgBP^{20_246}

Figure SI 1: Corresponding deconvoluted amide I' band (B, D, F, H) and 2nd derivatives (A, C, E, G) of all measured ArgBP variants at 25 °C.

Table SI 3: Unfolding temperatures (no. 75) and pressures (no. 36) of proteins with conditions as far as given in the literature by using different kinds of methods. Hyper-/thermophilic proteins are marked in red, whereas mesophilic proteins are marked in black.

Protein	$T_{\rm u}/^{\circ}{\rm C}$	Ref.	Protein	$p_{u/d}$ / bar	Ref.
1. Tubulin (porcine brain)	53 (D)	[13]	1. Tubulin (<i>porcine brain</i>)	1300 (D)	[13]
pH = 6.8	62		pH = 6.8	(25 °C)	
2. α-Chymotrypsin (<i>bovine pancreas</i>)	41	[14]	2. α-Chymotrypsin (<i>bovine pancreas</i>)	4900	[14]
pH = 7.0	(0)	[15]	pH = 7.0	(21 °C)	[15]
3. Cytochrome C (horse) $pH = 7.0$	60	[15]	3. Cytochrome C(norse) pH = 7.0	9000 (20 °C)	[15]
4. G-Aktin (rabbit skeletal muscle)	56	[16]	4. G-Aktin (rabbit skeletal muscle)	2000	[16]
pH = 7.8			pH = 7.8	(20 °C)	
5. Ubiquitin	82	[17]	5. Ubiquitin	5200	[17]
pD = 7.0		F101	pD = 7.0	(20 °C)	F101
6. Rs GFP (Aequorea victoria)	78	[18]	6. Rs GFP (Aequorea victoria) pD = 5.5	8600	[18]
pD = 5.5 7 Chymotrynsinogen	42	[19]	pD – 5.5 7. Chymotrypsinogen	3500	[19]
pH = 2.0	72		pH = 2.0	(20 °C)	
8. Ribonuclease A (<i>bovine pancreas</i>)	65	[20]	8. Ribonuclease A (<i>bovine pancreas</i>)	7500	[20]
pD = 7.0			pD = 7.0	(30 °C)	
9. Lipoxygenase (soaked soybeans)	68	[21]	9. Lipoxygenase (soaked soybeans)	6000	[21]
pH = 7.8	60	[22]	pH = 7.8		[22]
10. β -Lactoglobulin A (<i>bovine</i>)	60	[22]	10. β -Lactoglobulin A (<i>bovine</i>)	1500 (D)	[22]
$p \Pi = 7.0$	78	[23]	pn – 7.0	(20°C) 6000	[23]
pH = 9.0	70		pH = 9.0	(20° C)	
12. Staphylococcal nuclease	48	[24]	12. Staphylococcal nuclease	2100	[24]
(Staphylococcus aureus)			(Staphylococcus aureus)	(25 °C)	
pD = 5.5			pD = 5.5		
13. Lysozyme	77	[25]	13. Lysozyme	6000	[25]
pD = 7.4	67	[26]	pD = 7.4	(25° C)	[26]
14.11 tim 127	65	[20]	14. 11tin 12/ pD = 7.0	$(30^{\circ}C)$	[20]
15 Fluorescein binding Lipocalin FluA	47	[27]	15 Fluorescein binding Lipocalin FluA	1700	[27]
	.,			(25 °C)	
16. Equine serum albumin	57	[28]	16. Equine serum albumin	4000	[28]
pD = 4.4			pD = 4.4	(25 °C)	
17. Arc repressor	68	[29]	17. Arc repressor	1000 (D)	[30]
pH = 7.5	27	[31]	pH = 7.5	1500 (T)	[32]
pH = 7.0		[51]	18. Lactatenydrogenase (<i>Bacillus staarotharmonhilus</i>)	1500(1)	[52]
pH - 7.0			pH = 7.6	(20 C)	
19. Bovine serum albumin	65	[31]	19. Yeast Hexokinase	800 (D)	[33]
pH = 7.0			pH = 7.5	(30 °C)	
20. Maltodextrin Glucosidase	52	[34]	20. Yeast Glyceraldehyde-3-phosphate	990 (T)	[35]
pH = 7.4			dehydrogenase		
1 Del colo Veccherales	50	[36]	pH = 7.5	< 2400 (D)	[37]
pH = 7.2	58	[30]	pH = 7.1	< 2400 (D)	[3,]
22. Yeast 3-Phosphoglycerate kinase	54	[38]	22. Phosphofructokinase	< 2000 (D)	[39]
pH = 7.0			(Escherichia coli)	(25 °C)	
			pH = 8.2	,	
23. GroEL	70	[40]	23. GroEL	~ 2000 (O)	[41]
(Escherichia coli)			(Escherichia coli)	(20 °C)	
pH = 7.6	7([40]	pH = 7.6	2500 (0)	[41]
(Escherichia coli)	/0		24. Olueo (Escherichia coli)	$(20 ^{\circ}\text{C})$	
pH = 7.6			pH = 7.6		
25. Papain	83	[42]	25. Alkaline phosphatase	8200	[8]
(latex of the papaya fruit)			(Escherichia coli)		
pH = 5.6		E423			F 4 41
26. Immunoglobulin (monoclonal mouse	71 (Fc)-	[43]	26. Pyruvatkinase	< 3500 (T)	[44]
nH = 8.1	uomain		(Kaboli muscie) nH = 7.5	(25 °C)	
P** 0.1	I	I	P /.~	1	1

27. Carbonic anhydrase, isozyme I, human	59	[45]	27. Lactose repressor protein	~ 1400 (T)	[46]
erythrocytes			(Escherichia coli)		
pH = 6.1		[47]	pH = 7.5		F 401
28. Bovine pancreatic trypsin inhibitor	100	[47]	28. Bovine pancreatic trypsin inhibitor	5500	[48]
pH = 7.0	52	[49]	pD = 7.0	(25°C)	[50]
29. Adenyiate kinase (Escherichia coli)	52	[->]	pH = 2.0	unfolding	[50]
pH = 7.0			pH - 2.0	event	
				< 13 kbar	
30. DNA Polymerase	97.6	[51]	30. N-Ras	No	[52]
(Thermus aquaticus)			pD = 7.4	unfolding	
pH = 9.5				event	
				< 10 kbar	
$21 + A_{\rm H} + 1_{\rm ener} \left(D + \frac{1}{2} U \right)$	(1	[53]		(25 °C)	[54]
$31. \alpha$ -Amylase (<i>Bacilius sp.</i>)	61	[33]	31. Cold snock protein A	1500	[34]
32 Horse radish perovidase	74	[55]	32 Hemoglobin	1700 (D)	[56]
pH = 7.0	/ -		(Glossoscolex paulistus)	$(20 ^{\circ}\text{C})$	
			pH = 7.5	(20 0)	
33. F-Actin	63.1	[7]	33. F-Actin	3500 (O)	[7]
pD = 7.8			pD = 7.8	(20 °C)	
34. Microtubuli (calf brain)	76.3	[7]	34. HIV-1 protease	2600	[57]
pD = 6.8			pH = 8.0		
	(2.0	[58]	25.11.4	1750 (T)	[50]
35. Hsp90 (porcine brain) $mH = 7.0$	62.8	[30]	35. Urate oxidase	1750(1)	[39]
рн – 7.0			(Aspergillus flavus) pH = 8.0	(25 C)	
36 Lipase (Pseudomonas cenacia)	75.2	[60]	36 Leucine rich repeat domain of	1300	[61]
pH = 7.0	13.2		Anp32 tumor suppressor protein	(20 °C)	
37. Rubisco (Lucerne)	67.2	[62]	Protein	$T_{\rm r}/{\rm °C}$	Ref.
pH = 7.5					1011
38. Maltose binding protein	63	[63]	56. Small cold shock protein	88	[64]
(Escherichia coli)			(Thermotoga maritima)		
pH = 7.4			pH = 6.5		
39. Oxy-Hemoglobin	60.2	[65]	57. DNA ligase	95.3	[66]
(Glossoscolex paulistus)			(Thermus scoloductus)		
pH = 7.0	50.1	[67]	pH = 7.0	74	[68]
40. The phosphate isomerase (Saccharomycas caravisiaa)	39.1	[0,1	(<i>Thermonlasma acidonhilum</i>)	/4	[00]
pH = 8.5			nH = 7.5		
41. Formate-Dehydrogenase	57	[69]	59. Triosephosphate Isomerase	102	[68]
(Candida boidinii)			(Thermotoga maritima)		
pH = 7.5			pH = 7.5		
42. Luciferase	42	[70]	60. Cytochrome c	88.1	[71]
(Firefly)			(Hydrogenophilus thermoluteolus)		
pH=/.8	0([72]	pH = 7.5	01	[73]
43. Leucoagglutinin	86	[/2]	61. Farnesyl di-phosphate	91	[75]
(Fhaseolius valgaris) pH = 3.0			(Thermococcus kodakaraensis)		
			pH = 8.0		
44. Dihydrofolate reductase	46	[74]	62. Pyrrolidone carboxyl peptidase	115.5	[75]
(Escherichia coli)			(Pyrococcus furiosus)		
pH = 7.0			pH = 9.5		
45. Leucine-isoleucine-valine binding	67	[76]	63. Glutamate Dehydrogenase	113	[77]
protein			(Pyrococcus furiosus)		
pH = 7.0	62.0	[78]	pH = 8.0	08.6	[79]
pH = 6.9	05.8	[,0]	04. Methylguainne-DNA- methyltransferase	98.0	1981
Pii 0.2			(Thermococcus kodakaraensis)		
			pH = 8.0		
47. Bacteriorhodopsin	67.5	[80]	65. Methylguanine-DNA-	43.8	[79]
pH = 7.4			methyltransferase (Escherichia coli)		
			pH = 8.0		1
48. α-Crystallin	61	[81]	66. Alcohol dehydrogenase	87	[82]
(bovine lens)			(<i>Thermoanaerobacter brockii</i>)		
$p_{H} = 7.2$	52.0	[66]	$p_{H} = /.3$	60	[821
(Fscherichia coli)	55.9	[00]	nH = 7.5		[]
pH = 7.0					1
$p_{\Pi} = 7.0$					

50. Tetracycline repressor	59	[83]	68. Plastocyanin	Ox: 83,1	[84]
pH = 8.0			(Phormidium laminosum)	Red: 76,4	
			pH = 5.5		
51. 3-isopropylmalate dehydrogenase	63	[85]	70. L-arabinose isomerases	71	[86]
(Escherichia coli)			(Bacillus halodurans)		
pH = 7.0			pH = 8.0		
52. 3-isopropylmalate dehydrogenase	83	[85]	71. L-arabinose isomerases	91	[86]
(Thermus thermophilus)			(Thermotoga maritima)		
pH = 7.0			pH = 7.0		
53. Aspartate aminotransferase	85	[87]	72. Xylanase	81,4	[88]
(Sulfolobus solfataricus)			(Clostridium thermocellum)		
pH = 7.5			pH = 7.5		
54. RNase H	82	[89]	73. Ferredoxin	114	[90]
(Thermus thermophilus)			(Thermus thermophiles)		
pH = 5.5			pH = 7.2		
55. Phosphoglycerate kinase	91	[91]	74. Streptavidin	75.5	[92]
(Thermus thermophilus)			pH = 7.4		
pH = 7.5			-		
55. α-Amylase	86	[93]	75. Avidin	83	[92]
(thermophilic org.)			pH = 7.4		

$T_{\rm u}/^{\circ}{\rm C}$	$p_{u/d}$ / bar	Name
41	4900	α -Chymotrypsin (<i>bovine pancreas</i>) pH = 7.0
42	3500	Chymotrypsinogen pH = 2.0
47	1700	Fluorescein binding Lipocalin FluA
48	2100	Staphylococcal nuclease (Staphylococcus
		<i>aureus</i>) $pD = 5.5$
53	1300	Tubulin (<i>porcine brain</i>) pH = 6.8
56	2000	G-Aktin (<i>rabbit skeletal muscle</i>) pH = 7.8
57	4000	Equine serum albumin pD = 4.4
60	1500	β-Lactoglobulin A (<i>bovine</i>) pH=7.0
60	9000	Cytochrome C (<i>horse</i>) pH = 7.0
63,1	3500	F-Actin pD = 7.8
65	7500	Ribonuclease A (<i>bovine pancreas</i>) $pD = 7.0$
65	11000	Titin I27 pD = 7.0
68	1000	Arc repressor $pH = 7.5$
68	6000	Lipoxygenase (<i>soaked soybeans</i>) pH = 7.8
76	2500	GroES (<i>Escherichia coli</i>) pH = 7.6
77	6000	Lysozyme pD = 7.4
78	6000	Metmyoglobin (<i>Sperm whale</i>) pH = 9.0
78	8600	Rs GFP (Aequorea victoria) pD = 5.5
82	5200	Ubiquitin pD = 7.0
100	5500	Bovine pancreatic trypsin inhibitor $pH = 7.0$

Table SI 4: Unfolding temperatures and pressures used to generate Figure 4B inset.

References

- A. Ruggiero, J. D. Dattelbaum, A. Pennacchio, L. Iozzino, M. Staiano, M. S. Luchansky, B. S. Der, R. Berisio, S. Dauria, L. Vitagliano, *Acta Cryst. Sect. F Struc. Biol. Cryst. Commun.* 2011, 67, 1462–1465.
- [2] N. Balasco, G. Smaldone, M. Vigorita, P. Del Vecchio, G. Graziano, A. Ruggiero, L. Vitagliano, *Sci. Rep.* 2019, 9, 6617.
- [3] G. Smaldone, R. Berisio, N. Balasco, S. D'Auria, L. Vitagliano, A. Ruggiero, *Biochim. Biophys.* Acta 2018, 1866, 952–962.
- G. Smaldone, N. Balasco, M. Vigorita, A. Ruggiero, S. Cozzolino, R. Berisio, P. del Vecchio, G. Graziano, L. Vitagliano, *Int. J. Biol. Macromol.* 2018, *119*, 758–769.
- [5] A. Ruggiero, J. D. Dattelbaum, M. Staiano, R. Berisio, S. D'Auria, L. Vitagliano, *PLoS One* 2014, 9, 1–11.
- [6] M. S. Luchansky, B. S. Der, S. D'Auria, G. Pocsfalvi, L. Iozzino, D. Marasco, J. D. Dattelbaum, Mol. Biosyst. 2009, 6, 142–151.
- [7] P. H. Schummel, M. W. Jaworek, C. Rosin, J. Högg, R. Winter, *Phys. Chem. Chem. Phys.* 2018, 20, 28400–28411.
- [8] P. T. T. Wong, D. W. Armstrong, Biochim. Biophys. Acta 1992, 1159, 237–242.
- [9] P. B. Tooke, *Trends Anal. Chem.* **1988**, *7*, 130–136.
- [10] D. M. Byler, H. Susi, *Biopolymers* 1986, 25, 469–487.
- [11] S. J. Prestrelski, D. M. Byler, M. N. Liebman, *Biochemistry* 1991, 30, 133–143.
- [12] G. Panick, R. Winter, *Biochemistry* **2000**, *39*, 1862–1869.
- [13] P. H. Schummel, C. Anders, M. Jaworek, R. Winter, *ChemPhysChem* 2019, 20, 1–13.
- [14] Z. Sun, R. Winter, *Temperature- and Pressure-Induced Unfolding of a- Chymotrypsin*, Berlin, 2002.
- [15] H. Lesch, H. Stadibauer, J. Friedrich, J. M. Vanderkooi, *Biophys. J.* 2002, *82*, 1644–1653.
- [16] C. Rosin, M. Erlkamp, J. von der Ecken, S. Raunser, R. Winter, *Biophys. J.* 2014, 107, 2982– 2992.
- [17] H. Herberhold, R. Winter, *Biochemistry* **2002**, *41*, 2396–2401.
- [18] H. Herberhold, S. Marchal, R. Lange, C. H. Scheyhing, R. F. Vogel, R. Winter, J. Mol. Biol. 2003, 330, 1153–1164.
- [19] S. A. Hawley, *Biochemistry* **1971**, *10*, 2436–2442.
- [20] N. Takeda, M. Kato, Y. Taniguchi, *Biochemistry* 1995, 34, 5980–5987.
- [21] O. Heinisch, E. Kowalski, K. Goossens, J. Frank, K. Heremans, H. Ludwig, B. Tauscher, Z. Leb. Unters. -Forsch. 1995, 201, 562–565.
- [22] G. Panick, R. Malessa, R. Winter, *Biochemistry* 1999, 38, 6512–6519.
- [23] A. Zipp, W. Kauzmann, *Biochemistry* **1973**, *12*, 4217–4228.
- [24] G. Panick, G. J. A. Vidugiris, R. Malessa, G. Rapp, R. Winter, C. A. Royer, *Biochemistry* 1999,

38, 4157-4164.

- [25] S. R. Al-Ayoubi, P. H. Schummel, M. Golub, J. Peters, R. Winter, *Phys. Chem. Chem. Phys.* 2017, 19, 14230–14237.
- [26] J. Somkuti, Z. Mártonfalvi, M. S. Z. Kellermayer, L. Smeller, *Biochim. Biophys. Acta* 2013, 1834, 112–118.
- [27] J. Wiedersich, S. Köhler, A. Skerra, J. Friedrich, PNAS 2008, 105, 5756–5761.
- [28] Y. Taniguchi, A. Okuno, M. Kato, J. Phys. 2010, 215, 1-4.
- [29] C. R. Robinson, D. Rentzeperis, J. L. Silva, R. T. Sauer, J. Mol. Biol. 1997, 273, 692–700.
- [30] J. L. Silva, C. F. Silveira, A. Correia, L. Pontes, J. Mol. Biol. 1992, 223, 545–555.
- [31] I. Hayakawa, Y. Y. Linko, P. Linko, Leb. u.-Technol. 1996, 29, 756–762.
- [32] K. Müller, T. Seifert, R. Jaenicke, Eur. Biophys. J. 1984, 11, 87–94.
- [33] K. Ruan, G. Weber, *Biochemistry* 1988, 27, 3295–3301.
- [34] M. Goyal, T. K. Chaudhuri, K. Kuwajima, *PLoS One* **2014**, *9*, 1–23.
- [35] K. Ruan, G. Weber, *Biochemistry* **1989**, *28*, 2144–2153.
- [36] P. Huang, A. Dong, Spectroscopy 2003, 17, 453–467.
- [37] M. J. Kornblatt, R. Lange, C. Balny, Eur. J. Biochem. 2004, 271, 3897–3904.
- [38] G. J. Davies, S. J. Gamblin, J. A. Littlechild, H. C. Watson, *Proteins* 1993, 15, 283–289.
- [39] D. Deville-Bonne, A. J. Elese, Eur. J. Biochem. 1991, 200, 747–750.
- [40] A. K. Surin, N. V. Kotova, I. A. Kashparov, V. V. Marchenkov, S. Y. Marchenkova, G. V. Semisotnov, *FEBS Lett.* 1997, 405, 260–262.
- [41] M. Panda, J. Ybarra, P. M. Horowitz, J. Biol. Chem. 2001, 276, 6253–6259.
- [42] H. A. Sathish, P. R. Kumar, V. Prakash, Int. J. Biol. Macromol. 2007, 41, 383–390.
- [43] A. W. P. Vermeer, W. Norde, *Biophys. J.* 2000, 78, 394–404.
- [44] F. G. De Felice, V. C. Soares, S. T. Ferreira, Eur. J. Biochem. 1999, 266, 163–169.
- [45] D. Matulis, J. K. Kranz, F. R. Salemme, M. J. Todd, *Biochemistry* **2005**, *44*, 5258–5266.
- [46] C. A. Royer, G. Weber, T. J. Daly, K. S. Matthews, *Biochemistry* **1986**, *25*, 8308–8315.
- [47] G. I. Makhatadze, K. -S. -S. Kim, C. Woodward, P. L. Privalov, Protein Sci. 1993, 2, 2028–2036.
- [48] N. Takeda, K. Nakano, M. Kato, Y. Taniguchi, *Biospectroscopy* 1998, 4, 209–216.
- [49] P. Christova, A.-M. Gilles, C. Craescu, *Comptes Rendus l'Academie Bulg. des Sci.* 2000, 53, 77–80.
- [50] C. Dirix, F. Meersman, K. Heremans, *High Press. Res.* 2010, 23, 63–66.
- [51] I. Karantzeni, C. Ruiz, C. C. Liu, V. J. Licata, *Biophys. J.* 2003, 374, 785–792.
- [52] S. Kapoor, G. Triola, I. R. Vetter, M. Erlkamp, H. Waldmann, R. Winter, *PNAS* 2012, *109*, 460–465.
- [53] J. K. Yadav, V. Prakash, J. Biosci. 2009, 34, 377–387.
- [54] S. Schneider, H. Paulsen, K. C. Reiter, E. Hinze, C. Schiene-Fischer, C. G. Hübner, J. Chem. Phys. 2018, 148, 123336-1–13.
- [55] K. Chattopadhyay, S. Mazumdar, *Biochemistry* **2000**, *39*, 263–270.
- [56] J. L. Silva, M. Villas-Boas, C. F. S. Bonafe, N. C. Meirelles, J. Biol. Chem. 1989, 264, 15863-

15868.

- [57] M. Ingr, R. Lange, V. Halabalová, A. Yehya, J. Hrnčiřík, D. Chevalier-Lucia, L. Palmade, C. Blayo, J. Konvalinka, E. Dumay, *PLoS One* 2015, *10*, 1–27.
- [58] C. Garnier, I. Protasevich, R. Gilli, P. Tsvetkov, V. Lobachov, V. Peyrot, C. Briand, A. Makarov, *Biochem. Bioph. Res. Commun.* 1998, 249, 197–201.
- [59] E. Girard, S. Marchal, J. Perez, S. Finet, R. Kahn, R. Fourme, G. Marassio, A. C. Dhaussy, T. Prangé, M. Giffard, et al., *Biophys. J.* 2010, *98*, 2356–2364.
- [60] A. Tanaka, J. Biochem. 1998, 123, 289–293.
- [61] J. Roche, C. A. Royer, J. R. Soc. Interface 2018, 15, DOI 10.1098/rsif.2018.0244.
- [62] V. Béghin, H. Bizot, M. Audebrand, J. Lefebvre, D. G. Libouga, R. Douillard, Int. J. Biol. Macromol. 1993, 15, 195–200.
- [63] C. Ganesh, A. N. Shah, C. P. Swaminathan, A. Surolia, R. Varadarajan, *Biochemistry* 1997, 36, 5020–5028.
- [64] B. Schuler, W. Kremer, H. R. Kalbitzer, R. Jaenicke, *Biochemistry* **2002**, *41*, 11670–11680.
- [65] J. W. P. Carvalho, F. A. O. Carvalho, P. S. Santiago, M. Tabak, *Int. J. Biol. Macromol.* 2013, 54, 109–118.
- [66] D. Georlette, B. Damien, V. Blaise, E. Depiereux, V. N. Uversky, C. Gerday, G. Feller, J. Biol. Chem. 2003, 278, 37015–37023.
- [67] C. G. Benítez-Cardoza, A. Rojo-Domínguez, A. Hernández-Arana, *Biochemistry* **2001**, *40*, 9049–9058.
- [68] S. H. Park, H. S. Kim, M. S. Park, S. Moon, M. K. Song, H. S. Park, H. Hahn, S. J. Kim, E. Bae,
 H. J. Kim, et al., *PLoS One* 2015, *10*, 1–13.
- [69] H. Slusarczyk, S. Felber, M. R. Kula, M. Pohl, Eur. J. Biochem. 2000, 267, 1280–1289.
- [70] M. Naderi, A. A. Moosavi-Movahedi, S. Hosseinkhani, M. Nazari, M. Bohlooli, J. Hong, H. Hadi-Alijanvand, N. Sheibani, *Protein Pept Lett.* 2015, *22*, 23–30.
- [71] S. Fujii, M. Masanari, H. Inoue, M. Yamanaka, S. Wakai, H. Nishihara, Y. Sambongi, *Biosci. Biotech. Biochem.* 2013, 77, 1677–1681.
- [72] S. Biswas, A. M. Kayastha, J. Biochem. Mol. Biol. 2002, 35, 472–475.
- [73] S. Fujiwara, A. Yamanaka, K. Hirooka, A. Kobayashi, T. Imanaka, E. I. Fukusaki, *Biochem. Bioph. Res. Commun.* 2004, 325, 1066–1074.
- [74] H. Uedaira, S. -I. Kidokoro, M. Iwakura, S. Honda, S. Ohashi, Ann. NY Acad. Sci. 1990, 613, 352–357.
- [75] K. Ogasahara, N. N. Khechinashvili, M. Nakamura, T. Yoshimoto, K. Yutani, *Eur. J. Biochem.*2001, 268, 3233–3242.
- [76] R. S. Prajapati, M. Das, S. Sreeramulu, M. Sirajuddin, V. Sankaranarayanan, S. Krishnamurthy,
 R. Ranjani, C. Ramakrishnan, R. Varadarajan, *Proteins* 2007, *66*, 480–491.
- [77] H. Klump, J. Di Ruggiero, M. Kessel, J. B. Park, M. W. W. Adams, F. T. Robb, J. Biol. Chem. 1992, 267, 22681–22685.
- [78] A. Reyes-Alcaraz, M. Martínez-Archundia, E. Ramon, P. Garriga, Biophys. J. 2011, 101, 2798-

2806.

- [79] K. Shiraki, S. Nishikori, S. Fujiwara, H. Hashimoto, Y. Kai, M. Takagi, T. Imanaka, Eur. J. Biochem. 2001, 268, 4144–4150.
- [80] C. G. Brouillette, R. B. McMichens, L. J. Stern, H. G. Khorana, Proteins 1989, 5, 38–46.
- [81] T. Rasmussen, M. van de Weert, W. Jiskoot, M. R. Kasimova, *Proteins* 2011, 79, 1747–1758.
- [82] A. Barzegar, A. A. Moosavi-Movahedi, J. Z. Pedersen, M. Miroliaei, *Enzym. Microb. Technol.* 2009, 45, 73–79.
- [83] S. Kędracka-Krok, Z. Wasylewski, Eur. J. Biochem. 2003, 270, 4564–4573.
- [84] M. J. Feio, J. A. Navarro, M. S. Teixeira, D. Harrison, B. G. Karlsson, M. A. De La Rosa, *Biochemistry* 2004, 43, 14784–14791.
- [85] C. Motono, T. Oshima, A. Yamagishi, Protein Eng. 2001, 14, 961–966.
- [86] D. W. Lee, Y. H. Hong, E. A. Choe, S. J. Lee, S. B. Kim, H. S. Lee, J. W. Oh, H. H. Shin, Y. R. Pyun, *FEBS Lett.* 2005, 579, 1261–1266.
- [87] M. I. Arnone, L. Birolo, S. Pascarella, M. V. Cubellis, F. Bossa, G. Sannia, G. Marino, Protein Eng. 1997, 10, 237–248.
- [88] T. Collins, M. A. Meuwis, C. Gerday, G. Feller, J. Mol. Biol. 2003, 328, 419–428.
- [89] S. Kanaya, M. Itaya, J. Biol. Chem. 1992, 267, 10184–10192.
- [90] S. Griffin, C. L. Higgins, T. Soulimane, P. Wittung-Stafshede, *Eur. J. Biochem.* 2003, 270, 4736– 4743.
- [91] H. Nojima, T. Oshima, H. Noda, J. Biol. Chem. 1979, 85, 1509–1517.
- [92] M. González, C. E. Argaraña, G. D. Fidelio, *Biomol. Eng.* 1999, 16, 67–72.
- [93] G. Feller, J. Phys. Condens. Matter 2010, 22, 1–17.