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The minimum image (MI) method

Using this rather approximate MI model, we can write the total interaction energy (UC) of

our C system, for a specific ion concentration {ri} ≡ {xi, yi, zi}, as:

βUC =
lb
2

∑
i

∑
j 6=i

ξiξj[
ρ2ij + (zi − zj)2

]1/2 + +βUim ({ri}) + βUex (1)

where β is the inverse thermal energy, ρ2ij = (xi − xj)
2 + (yi − yj)

2, ξi is the valency of

ion i, and βUim({ri}) is the reduced total image charge interaction energy, resulting from

multiple reflections across the left and right surfaces. Uex is the interaction energy with a

mean-field charge distribution from the region outside the central box + its images. This

distribution is established from a previous MI simulation, carried out in absence of any long-

range correction. The external potential is symmetrized, adjusted so that it is zero at the
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electrode surfaces (where we know that the locally determined potential should be zero).

Details can be found in refs.1,2

Defining ∆ ≡ |zj − zi| and α ≡ |zi + zj|, we have:

2βU i,j
im

lB
= −

∑
k=1,3,...

[(
ρ2 + ((k − 1)h+ α)2

)−1/2
+
(
ρ2 + ((k + 1)h− α)2

)−1/2]
+

+
∑

m=2,4,...

[(
ρ2 + (mh−∆)2

)−1/2
+
(
ρ2 + (mh+ ∆)2

)−1/2]
(2)

where we have explicitly noted that the infinite sum has to be truncated in practice. We let

nmax define the total number of reflections, where nmax = max(kmax,mmax). The interactions

are thus truncated by nmax along the z direction, and by the size of the simulation box

(utilizing a minimum image cutoff), along the (x, y) directions.

Calculating the potential profile

We can rewrite equation (2) as:

2βU i,j
im

lB
= −

((
ρ2 + α

)2)−1/2 − ∑
n=1,2,...

[(
ρ2 + (2nh+ α)2

)−1/2
+
(
ρ2 + (2nh− α)2

)−1/2]
+

+
∑

n=1,2,...

[(
ρ2 + (2nh−∆)2

)−1/2
+
(
ρ2 + (2nh+ ∆)2

)−1/2]

Now, for the total potential, there is of course also the direct interaction,
(

(ρ2 + α)
2
)−1/2

.

If we smear out the charges in a mean-field manner, with an effective surface charge density

σs(zj) at zj, then the average potential Ψ(zi) at zi,from the charge density at zj, becomes:

eΨ(zi)

2πlBσs(zj)
= −

[
∆− α +

∑
n=1,2,...

2nh+ ∆ + 2nh−∆− 2nh− α− 2nh+ α

]
= α−∆

In other words, we can consider (say) the left half cell, and sum up the interaction difference

with the charged sheet from zj, and its nearest image (across the left wall). Combining this
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with a similar approach for the right half cell, will naturally reduce the statistical noise.

Image Ewald simulations of an RPM 3:1 salt

For completeness, we include results that are analogous to those reported in Figure 2 of the

main paper, but with trivalent cations, i.e. a 3:1 salt. The chosen separation, h = 145 Å
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Figure 1: Average potential profiles, as obtained from Image Ewald simulations at βΨbiase =
−3, and at Ψbias = 0. The salt chemical potential was βµsalt = −12.

was perhaps somewhat small, but it is still clear that the mid plane value of Ψ(z) − Ψref

will match −Ψbias at wide enough separations.

Image Ewald simulations of a 1:1 salt, where the cations

have a non-central charge

Finally, we give a numerical example, demonstrating that Ψref = 0, for a charge-symmetric

salt. Rather than treating a simple RPM model, we have chosen to study a monovalent

salt, where the charge is displaced a distance 2Å from the hard-sphere centre (the anions

have central charges). This leads to non-trivial and asymmetric distributions also at neutral

surfaces, since the cations can approach their image charge more closely that the anions,
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at the electrode interfaces. This is highlighted in graph (a) of Figure 3. In graph (b), we

show that the average potential profile nevertheless (i.e. despite the ion asymmetry) vanishes

when Ψbias = 0, which means that the reference potential also vanishes.
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Figure 2: Image Ewald GC simulations of an aqueous 1:1 salt solution, in which the cations
have their charged displaced a distance 2 Å from the hard-sphere centre. The salt chemical
potential was βµsalt = −10.7.
(a) Ion density distributions, at zero applied bias potential.
(b) Average potential profiles. The finite bias potential was set to βΨbiase = −5.
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